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Abstract

Issue resolution, a complex Software Engineer-
ing (SWE) task integral to real-world develop-
ment, has emerged as a compelling challenge
for artificial intelligence. The establishment of
benchmarks like SWE-bench revealed this task
as profoundly difficult for large language mod-
els, thereby significantly accelerating the evo-
lution of autonomous coding agents. This pa-
per presents a systematic survey of this emerg-
ing domain. We begin by examining data con-
struction pipelines, covering automated collec-
tion and synthesis approaches. We then pro-
vide a comprehensive analysis of methodolo-
gies, spanning training-free frameworks with
their modular components to training-based
techniques, including supervised fine-tuning
and reinforcement learning. Subsequently, we
discuss critical analyses of data quality and
agent behavior, alongside practical applications.
Finally, we identify key challenges and out-
line promising directions for future research.
An open-source repository is maintained at
https://github.com/DeepSoftwareAnaly
tics/Awesome-Issue-Resolution to serve
as a dynamic resource in this field.

1 Introduction

The vision of constructing a true AI software en-
gineer has long been an appealing prospect in
computer science. In pursuit of this, researchers
initially relied on function-level code generation
benchmarks such as HumanEval (Chen et al., 2021).
Driven by the remarkable success of Large Lan-
guage Models (LLMs), the prospect of automat-
ing software engineering to function akin to a hu-
man developer has become increasingly attainable.
However, they often struggle to handle the dynamic
interactions with development environments and
human collaboration in realistic scenarios. To ad-
dress this limitation and align evaluation with au-
thentic software development scenarios, Jimenez
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Figure 1: Issue Resolution

et al. (2024) introduced SWE-bench and defined
the task of issue resolution. This task requires an
automatic approach to help LLMs navigate com-
plex, multi-file repositories to resolve issues in
GitHub (see Figure 1 and Section 2). By revealing
the difficulty of repository-level engineering, SWE-
bench catalyzed a research frontier focused on nav-
igating and modifying complex environments (Pan
et al., 2025a). It marks a departure from initial
software generation as explored in ChatDev (Qian
et al., 2024) and MetaGPT (Hong et al., 2024), to
the subsequent stages of software maintenance and
evolution.

Despite the surge of research in this new fron-
tier, the literature remains fragmented. Current
surveys primarily focus on code generation, failing
to address the far more complex challenge of issue
resolution. This paper aims to bridge this gap by
providing the first in-depth survey of this domain.

We conducted a comprehensive survey of pub-
licly available literature, including 135 papers and
online resources relevant to issue resolution. We
established a tailored classification framework to
provide a structured perspective on this rapidly
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evolving domain. Consequently, our contributions
can be summarized as follows: We present a sys-
tematic survey on issue resolution, organized by
a structured taxonomy covering Data, Methods,
and Analysis. Furthermore, we identify key chal-
lenges and future directions, and provide a open-
source repository to support the community.

2 Task formulation

Issue resolution requires LLMs to synthesize a
valid code change (also called a patch) P to re-
solve the issue, interacting with a codebase (as
shown in Figure 1). Formally, an instance of the
task can be expressed as I = (D, C, T ), compris-
ing an issue description D, the codebase C, and a
corresponding test T . The observable parts of the
instance, including D and C, are available during
the resolving process, which contains supplemen-
tary information on the corresponding environment
E that can be explored. So a method M is expected
to achieve:

P = M(D, C, E) (1)

After the patch P is applied to C, the evaluation
is conducted through running tests on the modi-
fied codebase C′ = Apply(C,P). The resolution
outcome r ∈ {0, 1} is then determined by the exe-
cution of T , denoted as Exec(C′, T ). On a dataset
including n instances(I = {Ii}Ni=1), overall perfor-
mance metric is:

Resolved Rate =
1

|I|

|I|∑
i=1

ri (2)

3 Data

Data is fundamental to the issue-resolution task,
serving as both an evaluation benchmark and a
training resource. Thus, datasets are classified into
evaluation datasets (§ 3.1.1) and training datasets
(§ 3.1.2). Construction approaches are divided
into two types: data collection (§ 3.2.1) from real-
world online sources, and data synthesis (§ 3.2.2)
achieved by rewriting real-world data or rule-based
generation. Statistics for all datasets are provided
in § A.3.

3.1 Datasets
3.1.1 Evaluation datasets
SWE-bench (Jimenez et al., 2024) established the
datasets by collecting issue–Pull Request (PR)

pairs from popular Python repositories, pairing
each issue with a full repository snapshot for reso-
lution. However, invalid tests and underspecified
descriptions in the original dataset make many in-
stances unsuitable for evaluation. To address this
issue and ensure data quality, SWE-bench Veri-
fied (OpenAI, 2024) was introduced, offering a
subset of manually validated samples as a trusted
benchmark.

While most evaluation datasets target Python,
researchers extend these tasks to ten different
programming languages to broaden the linguis-
tic scope, as seen in SWE-bench Multilingual and
Multi-SWE-bench, et al. (Zan et al., 2024, 2025;
Rashid et al., 2025; Guo et al., 2025b; Yang et al.,
2025c; Mhatre et al., 2025). To address the limita-
tion of relying solely on textual data, researchers
have focused on aggregating multimodal infor-
mation, primarily derived from images such as
UI screenshots and diagrams (Yang et al., 2024b;
Zhang et al., 2025e; Guo et al., 2025b). For in-
stance, Yang et al. (2024b) integrates these visual
contexts and introduces a novel visual tester to val-
idate the correctness of visual modifications.

To bridge the significant gap between initial eval-
uation datasets and realistic software development
scenarios, researchers introduced datasets (Mis-
erendino et al., 2025; Deng et al., 2025; Tarasova
et al., 2025) that incorporate enterprise-level com-
plexity and diverse domains. Recent advancements
have also shifted towards refining metrics for issue
resolution, such as efficiency and safety (He et al.,
2025a; Ma et al., 2025a; Xu et al., 2025a).

3.1.2 Training datasets

Textual data The initial training data typically
consists of raw task instances in the form of static
issue-PR, as exemplified by the training set in SWE-
bench (Jimenez et al., 2024), to equip models with
fundamental capabilities to resolve issues before
they engage with interactive environments.

Training Environment Environment datasets
aim to address the limitations of static text by con-
structing interactive code environments that pro-
vide LLMs with execution feedback. In early initia-
tives, researchers attempted to equip each data in-
stance with a corresponding Conda or Docker envi-
ronment, enabling LLMs to incorporate code execu-
tion results as feedback during the training process,
as seen in benchmarks like Multi-SWE-RL (Zan
et al., 2025). Nevertheless, these datasets often
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Training Datasets
(§3.1.2)
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OpenHands (Wang et al., 2025g), OrcaLora (Yu et al., 2025b), DEI (Zhang et al., 2024a),
MarsCode Agent (Liu et al., 2024b), SWE-Search (Antoniades et al., 2025), CodeCoR (Pan et al., 2025b),
Agent KB (Tang et al., 2025a), SWE-Debate (Li et al., 2025a), SWE-Exp (Chen et al., 2025b),
Trae Agent (Team et al., 2025c), Meta-RAG (Tawosi et al., 2025),

Workflow
(§4.1.1)

Agentless (Xia et al., 2024), Conversational Pipeline (Cheshkov et al., 2024), SynFix (Tang et al., 2025b),
CodeV (Zhang et al., 2025e), GUIRepair (Huang et al., 2025).

Modules
(§4.1.1)

Tool
(§4.1.2)

MAGIS (Tao et al., 2024), AutoCodeRover (Zhang et al., 2024b), SWE-agent (Yang et al., 2024a),
Alibaba LingmaAgent (Ma et al., 2025b), OpenHands (Wang et al., 2025g), SpecRover (Ruan et al., 2025),
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Git Context Controller (Wu, 2025), Trae Agent (Team et al., 2025c), TestPrune (Chen et al., 2025c),
e-Otter++ (Ahmed et al., 2025b), Meta-RAG (Tawosi et al., 2025),

Memory
(§4.1.3)

Infant Agent (Lei et al., 2024), EvoCoder (Lin et al., 2024), Learn-by-interact (SU et al., 2025),
DGM (Zhang et al., 2025a), ExpeRepair (Mu et al., 2025), Agent KB (Tang et al., 2025a),
SWE-Exp (Chen et al., 2025b), RepoMem (Wang et al., 2025a), ReasoningBank (Ouyang et al., 2025a).

Inference-time
Scaling (§4.1.4)

SWE-Search (Antoniades et al., 2025), CodeMonkeys (Ehrlich et al., 2025), SWE-PRM (Gandhi et al., 2025),
ReasoningBank (Ehrlich et al., 2025).

Training-based
Methods
(§4.2)

SFT-based
Methods
(§4.2.1)

Lingma SWE-GPT (Ma et al., 2024), Scaling data collection (Nebius, 2024), CodeXEmbed (Liu et al., 2025c),
SWE-Gym (Pan et al., 2025a), TSP (Xiong et al., 2025), Co-PatcheR (Tang et al., 2025c), SWE-Swiss (He et al., 2025b),
Devstral (Rastogi et al., 2025), Kimi-Dev (Yang et al., 2025d), SWE-Compressor (Liu et al., 2025a).

RL-based
Methods
(§4.2.2)

SWE-RL (Wei et al., 2025a), SoRFT (Ma et al., 2025c), SEAlign (Zhang et al., 2025b), SWE-Dev1 (Du et al., 2025),
Satori-SWE (Zeng et al., 2025b), Agent-RLVR (Da et al., 2025), DeepSWE (Luo et al., 2025), SWE-Dev2 (Wang et al., 2025c),
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SWE-RM (Shum et al., 2025).
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(§5)
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Methods Analysis
(§5.2)

Context Retrieval (Kovrigin et al., 2024), Evaluating software development agents (Chen and Jiang, 2025), Overthinking (Cuadron et al., 2025),
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Security analysis (Sajadi et al., 2025), Failures analysis (Liu et al., 2025b), SeaView (Bula et al., 2025), SWEnergy (Tripathy et al., 2025).

Figure 2: Overall perspective on data, methods, and analysis for SWE tasks, featuring corresponding papers.

overlook the specific interface design required for
effective LLM-environment interaction. To address
this, Jain et al. (2025) introduced a more interactive
Gym environment (R2E-Gym) that utilizes LLM-
synthesized test cases to verify environment usabil-
ity, thereby synthesizing large-scale environment
data. Similarly, Pan et al. (2025a) constructed Gym
environments based on real-world GitHub issues.

Trajectories Trajectory datasets capture the pro-
cedural interplay between language models and ex-
ecution environments through tool invocations and
feedback loops (Nebius, 2024; Jain et al., 2025;
Pan et al., 2025a; Pham et al., 2025; Xie et al.,
2025; Guo et al., 2025c)(See § A.3). To obtain
high-quality trajectories, researchers typically em-
ploy inference-time scaling strategies to generate
many candidates, then apply verifiers to filter and

select the best (Nebius, 2024; Yang et al., 2025c).

3.2 Data construction
The construction of training data for software
agents involves transitioning from manual to auto-
mated engineering pipelines. Detailed background
information is provided in § A.2.

3.2.1 Automated data collection
Static datasets often suffer from rigidity, high main-
tenance costs, and limited scale, which impede the
effective training of robust models. In response, the
field is evolving towards scalable, automated data
collection methods. Those automated pipelines
usually leverage LLMs to explore repository con-
figurations, identify files related to environment
setup, and generate corresponding dependency in-
stallation commands to build Docker images for in-
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Figure 3: A classification overview of data, training-free methods, and training methods for solving SWE tasks.

dividual issues. Subsequently, they employ existing
testing frameworks and predefined log parsers to
analyze test execution results, encompassing both
workflow-based and agent-based paradigms, such
as SWE-rebench and RepoLaunch (Badertdinov
et al., 2025; Zhang et al., 2025d). Notably, SWE-
Factory employs a memory-enhanced framework
for environment setup and verification, while utiliz-
ing an exit-code-based automatic grading method
to design parsers capable of automatically interpret-
ing execution results across diverse testing frame-
works in different programming languages (Guo
et al., 2025c). More recently, RepoForge (Chen
et al., 2025e) enhanced the pipeline’s automation
by incorporating a automatic verification mecha-
nism based on SPICE (Oliva et al., 2025) following
data construction, effectively replacing the need for
human expert validation.

3.2.2 Automated data synthesis

To overcome the challenges of limited real-world
data availability and expensive manual verifica-
tion, researchers have increasingly adopted auto-
mated data synthesis approaches. For instance,
SWE-Synth (Pham et al., 2025) achieves this by
rewriting target code and generating correspond-
ing tests. Drawing on test-driven development,
SWE-Flow (Zhang et al., 2025c) employs a run-
time dependency graph to derive incremental code
and requirement documents directly from unit tests.
More recently, addressing the need to minimize the
storage footprint while scaling, SWE-Smith (Yang
et al., 2025c) expands the dataset by paraphras-
ing descriptions and injecting bugs, leveraging a
shared environment strategy for data derived from
the same source. Similarly, SWE-Mirror (Wang
et al., 2025e) transplants real-world issues into
target repositories, generating verifiable tasks to
further scale the data using shared environmental

configurations.

4 Methods

4.1 Training-free method

To overcome constraints such as fixed context win-
dows and static knowledge, training-free meth-
ods utilizes external components and sophisticated
prompting. As shown in Figure 3, we classify
these methods into three categories based on the
underlying framework: (1) Frameworks, encom-
passing high-level architectures like single-agent,
multi-agent, and fixed-workflow designs; (2) Mod-
ules, providing plug-and-play augmentations such
as Tools for repository interaction and Memory for
experience accumulation; and (3) Inference-time
Scaling(or test-time scaling), employing search or
parallelization strategies to enhance success rates
without modifying model parameters.

4.1.1 Frameworks
To handle the multi-stage execution required for
issue resolution, current research structures LLM
activities into either dynamic agent-based or rigid
workflow-based frameworks.

Single-agent Analogous to software engineers
who write code and invoke diverse tools to resolve
issues, single-agent frameworks were initially con-
structed to execute tasks via tool-based interaction
paradigms. SWE-agent (Yang et al., 2024a) pio-
neers the agent-computer interface, which enables
autonomous file navigation, code editing, and test
execution, bridging natural language understanding
with repository-level operations.

However, granting full autonomy for every deci-
sion often leads to redundant action sequences due
to reasoning imprecision, resulting in prohibitive
operational costs. To address it, Li et al. (2025b)
reduces overhead by either constraining specific



phases into rigid workflows.
To further enhance generalization across diverse

issue types, self-evolutionary frameworks have
emerged to autonomously refine agent capabilities.
For instance, Darwin Gödel Machine employs an
evolutionary process starting from a minimal base-
line, where the LLM generates, scores, and selects
optimal candidate agent implementations over suc-
cessive iterations to evolve its structure (Zhang
et al., 2025a; Xia et al., 2025; Lin et al., 2025).

Multi-agent Introduced concurrently with single-
agent systems, multi-agent frameworks focus
on collaboration and task allocation, often per-
formed in the form of human software develop-
ment team (Tao et al., 2024; Zhang et al., 2024b;
Liu et al., 2024b; Antoniades et al., 2025; Yu
et al., 2025b; Team et al., 2025c). For instance,
MAGIS (Tao et al., 2024) firstly implements this
by assigning agents to roles such as Manager, De-
veloper, and QA Engineer. This setup allows agents
to role-play and autonomously convene meetings
for effective communication.

However, those works primarily used text-based
contexts for information exchange but failed to ex-
plicitly model how agents collaborate. To address
this limitation, CodeR (Chen et al., 2024) tackled
the challenge of unreliable agent collaboration by
introducing task graphs, a formal data structure to
convert a high-level plan into a parsable, directed
graph to ensure precise execution. Also based on
graphs, SWE-Debate (Li et al., 2025a) organizes a
three-round debate among specialized agents, each
embodying distinct reasoning perspectives along
the fault propagation trace in the code dependency
graph to forge a more concrete solution.

With the proliferation of diverse agent frame-
works, recent research has shifted towards con-
structing unified platforms capable of orchestrating
collaboration among agents with varying architec-
tures. (Wang et al., 2025g; Zhang et al., 2024a)For
example, Zhang et al. (2024a). proposed DEIBase,
a framework designed to leverage LLMs to score
and rank solutions generated by multiple agent
frameworks. By integrating multiple agents in this
manner, DEIBase achieves superior performance
compared to single-agent approaches.

Workflow Fixed-workflow architectures improve
stability by enforcing predefined steps instead of
allowing open-ended exploration. Some systems
adopt a linear pipeline—localization, repair, and
validation—to ensure efficiency and reproducibil-

ity (Xia et al., 2024). For visual tasks, researchers
integrate Vision Language Models to directly parse
UI screenshots into code (Zhang et al., 2025e;
Huang et al., 2025). Additionally, to handle com-
plex codebases, recent work utilizes dependency
graphs to guide precise, repository-wide modifica-
tions instead of relying on random search (Tang
et al., 2025b).

4.1.2 Tool modules
In training-free frameworks, LLMs rely on special-
ized tools to augment reasoning without fine-tuning.
These tools are organized by the standard repair
pipeline, progressing from bug reproduction, fault
localization, and code search to patch generation,
validation, and test generation.

Bug reproduction tools. These tools automate
the critical first step of debugging by generating
executable scripts that trigger reported defects. Im-
plementations typically leverage historical inter-
action data to adapt to repository-specific conven-
tions (Lin et al., 2024), or employ Finite State Ma-
chines to govern behavior via multi-dimensional
feedback, as in AEGIS (Wang et al., 2024).

Fault localization tools. Once a bug is repro-
duced, these tools pinpoint suspicious code regions
to narrow the search space. Common approaches
include method-level Spectrum-Based Fault Local-
ization (SBFL) (Zhang et al., 2024b) and graph-
based methods that construct code dependency
graphs to trace fault propagation (Li et al., 2025a).

Code search tools. These tools retrieve relevant
dependency context after localization. Strategies
range from interactive retrieval using BM25 or
AST-based APIs (Tao et al., 2024; Yang et al.,
2024a), to graph-based global understanding via
Knowledge Graphs and Language Server Proto-
cols (Ma et al., 2025b; Liu et al., 2024b), and dy-
namic managers that balance exploration breadth
and depth (Yu et al., 2025b; Jiang et al., 2025b).

Patch generation tools. These tools guide LLM
output quality through structured methodologies.
Key techniques include augmenting input context
via specification inference (Ruan et al., 2025), em-
ploying robust editing formats such as AutoDiff to
bypass line-numbering failures (Yang et al., 2024a;
Liu et al., 2024b), and ensemble selection mech-
anisms that filter candidates via regression test-
ing (Team et al., 2025c).



Patch validation tools. These tools confirm cor-
rectness and prevent regressions through external
verification. Standard approaches include dynamic
execution orchestration using sandboxed environ-
ments (Zhang et al., 2024b; Liu et al., 2024b), and
static analysis mechanisms leveraging QA agents
or Language Server Protocols for immediate diag-
nostic feedback (Tao et al., 2024; Liu et al., 2024b).

Test generation tools. These tools generate re-
production test cases to validate intent and guide
resolution. Systems typically employ feedback-
driven iterative mechanisms that utilize error clas-
sification to synthesize failing tests reproducing
reported defects, as in Otter (Ahmed et al., 2025a)
and Issue2Test (Nashid et al., 2025).

Other extensions. Recent extensions focus on
equipping agents with versatile tools to handle
broader scenarios, including multimodal chal-
lenges. Strategies involve multimodal browsing
and unified information access, which standardizes
heterogeneous data into Markdown for seamless
processing (Soni et al., 2025; Lei et al., 2025).

4.1.3 Memory modules

Memory integration empowers agents to transcend
isolated problem-solving by accumulating histor-
ical context to guide future actions. Initial archi-
tectures focused on establishing hierarchical stor-
age structures, such as segregating general knowl-
edge from repository-specific details to mitigate
rigidity (Lin et al., 2024), or archiving popula-
tions of agent variants to support open-ended evo-
lution (Zhang et al., 2025a). To overcome the
limitations of static prompting, researchers have
subsequently incorporated dual-process cognitive
architectures that synergize episodic records of con-
crete repairs with semantic layers of abstract in-
sight, enabling dynamic retrieval based on current
context (Mu et al., 2025). Current frontiers pri-
oritize distilling transferable reasoning strategies,
effectively shifting the paradigm from storing raw
data to abstracting high-level policies from both
successful and failed trajectories. This evolution
allows agents to leverage multi-faceted experience
banks to guide strategic search frameworks like
MCTS (Chen et al., 2025b) and to prevent error
repetition through generalized, rule-based learn-
ing (Ouyang et al., 2025a).

4.1.4 Inference-time scaling
While specialized tools and memory systems en-
hance specific agent capabilities, relying solely
on linear execution paths often limits the explo-
ration of complex solution spaces. To address this,
inference-time scaling has emerged as a critical
paradigm to expand the search breadth and depth
during problem-solving. To overcome the rigid-
ity of sequential workflows, recent research fo-
cuses on enabling non-linear exploration via Monte
Carlo Tree Search (MCTS), which facilitates flex-
ible backtracking and qualitative feedback loops
to prevent agents from stagnating in repetitive cy-
cles (Antoniades et al., 2025). Complementing
this algorithmic shift, strategies for scaling com-
putational resources deploy multiple independent
state machines in parallel, maximizing solution
coverage while amortizing the high costs of con-
text identification without the need for model re-
training (Ehrlich et al., 2025). Furthermore, ad-
vanced frameworks are now integrating memory-
driven scaling, utilizing time-travel mechanisms
to generate diverse experiences that serve not just
to resolve the immediate task, but to distill gener-
alizable reasoning strategies for long-term agent
evolution (Ouyang et al., 2025a).

4.2 Training-based method

Training-based methods encompass Supervised
Fine-Tuning-based (SFT-based) methods and Rein-
forcement Learning-based (RL) methods, utilizing
resources from Section 3.1.2 to enhance the funda-
mental programming capabilities of LLMs.

4.2.1 SFT-based method
Supervised Fine-Tuning (SFT) serves as the pri-
mary mechanism for grounding base models in
software engineering protocols. Recent efforts to
achieve robust domain adaptation focus on three
key dimensions: (1) Data Scaling. Strategies in-
creasingly prioritize the expansion of data scale
and diversity via synthesized corpora. Frame-
works employ iterative generation and filtering
pipelines—augmented by automatic test gener-
ation or mid-training on billions of GitHub to-
kens—to comprehensively cover diverse repair sce-
narios (Ma et al., 2025b; Wang et al., 2025c; Yang
et al., 2025d). (2) Curriculum Learning. Be-
yond raw volume, research emphasizes multi-stage
curriculum learning. Models are refined through
phased training sequences that progress from broad
trajectory ingestion to strictly filtered, high-quality



subsets or specialized tasks like localization and
testing (He et al., 2025b; Rastogi et al., 2025; Liu
et al., 2025a). (3) Rejection Sampling. To bridge
the gap toward reinforcement learning, current
methods employ rejection sampling pipelines. By
fine-tuning exclusively on successful trajectories,
these methods establish a strong baseline policy
while simultaneously training verifiers to re-rank
solutions at inference time (Pan et al., 2025a). See
Table 3 for detailed statistics on these SFT-trained
models.

4.2.2 RL-based method
Reinforcement learning optimizes issue resolution
strategies through iterative interaction. This pro-
cess hinges on the synergy of three core compo-
nents: the algorithm for policy updates, reward
design for guiding exploration, and the scaffold
for managing environment rollouts. A statistical
overview of recent models and their implementa-
tions across these dimensions is presented in Ta-
ble 4 and Table 5.

Algorithm. The optimization of agent behaviors
leverages various policy gradient and alignment
strategies to stabilize learning. We discuss three
common algorithmic choices as follows. (1) Group
Relative Policy Optimization (GRPO). A dominant
approach employs GRPO, which enhances reason-
ing capabilities by normalizing advantages across
group sampling without the heavy computational
burden of a critic model (Wei et al., 2025a; Sun
et al., 2025). (2) Proximal Policy Optimization
(PPO). Beyond group-based methods, some ap-
proaches utilize PPO for stable updates focused
on subtasks (Ma et al., 2025c). (3) Direct Prefer-
ence Optimization (DPO). Other work integrates
MCTS with DPO to align complex, multi-step de-
cision processes with high-quality preferred trajec-
tories (Zhang et al., 2025b).

Reward design. Effective feedback mechanisms
typically incorporate both sparse outcome-based
rewards and dense process-oriented signals. Most
systems employ outcome reward models to pro-
vide terminal signals by utilizing strict metrics
like patch similarity or detailed subtask verifica-
tion ranging from localization to editing, thereby
rigorously aligning outputs with ground truth (Wei
et al., 2025a; Ma et al., 2025c). To mitigate the chal-
lenge of signal sparsity in long-horizon reasoning,
researchers increasingly adopt process reward mod-
els and potential-based shaping techniques; these

mechanisms provide dense, step-by-step feedback
or token-level incentives, offering reward signals
for intermediate behaviors such as context manage-
ment and trajectory search throughout the reason-
ing process (Zeng et al., 2025b; Da et al., 2025;
Sun et al., 2025).

Scaffold. In the context of RL, a scaffold serves
as the inference framework for rollouts. As statis-
tics in Table 4 indicate, OpenHands is the most
prevalent scaffold, followed by workflow-based
methods (notably Agentless and two-stage work-
flows). Environment-native frameworks like R2E-
Gym and SWE-Gym are also frequently adopted
due to their seamless alignment with training data.

5 Analysis

Beyond developing new methodologies, a comple-
mentary line of research focuses on empirical anal-
ysis of existing data and methods, which provide
critical insights into the limitations of current ap-
proaches and offer valuable perspectives for future
research directions.

5.1 Data analysis

Recent scrutiny has exposed hidden benchmark
defects, revealing that agent success rates are fre-
quently inflated by solution leakage, ambiguous
issue descriptions, and weak test suites that fail
to catch incorrect patches (OpenAI, 2024; Alei-
than et al., 2024; Wang et al., 2025j). Recogniz-
ing that manual cleanup is too costly and incon-
sistent for large-scale datasets, the field is shifting
toward automating validation workflows, utilizing
model-based consensus mechanisms to reliably dis-
tinguish valid fixes from false positives without
human intervention (Oliva et al., 2025).

5.2 Methods analysis

Research has shifted beyond measuring simple suc-
cess rates to investigate the behavioral pathology of
agents. A primary focus involves diagnosing inter-
nal reasoning failures, specifically examining the
tendency of models to prioritize prolonged internal
deliberation over necessary environmental inter-
action—a maladaptive pattern that leads to anal-
ysis paralysis and rogue actions (Cuadron et al.,
2025). Complementing this, efforts to manage the
complexity of massive, 128k-token interaction logs
have led to streamlining trajectory inspection, uti-
lizing novel visual interfaces to transform cryptic



output streams into navigable workflows for rapid
error analysis (Bula et al., 2025).

6 Application

The industrial deployment of software engineering
AI has progressed from localized IDE assistance
to fully autonomous systems capable of handling
complex enterprise workflows. Due to space con-
straints, we provide a detailed discussion on these
application scenarios in § A.5.

7 Challenges and Opportunities

High computational overhead. The scalability
of SWE agents is bottlenecked by the high costs
of sandboxed environments and long-context in-
ference. Optimization strategies are required to
streamline these resource-intensive loops without
sacrificing performance.

Opacity in resource consumption. Benchmarks
often overlook efficiency, masking the high costs
of techniques like inference-time scaling. Standard-
ized reporting of latency and token usage is cru-
cial for guiding the development of cost-effective
agents.

Limited visually-grounded reasoning. Reliance
on text proxies for UI interpretation limits effec-
tiveness. Future research can adopt intrinsic multi-
modal solutions, such as code-centric MLLMs, to
better bridge the gap between visual rendering and
underlying code logic.

Safety risks in autonomous resolution. High
autonomy carries risks of destructive actions, such
as accidental code deletion. Future systems should
integrate safeguards, such as Git-based version con-
trol, to ensure autonomous modifications remain
secure and reversible.

Lack of fine-grained reward signals. Reinforce-
ment learning is hindered by sparse, binary feed-
back. Integrating fine-grained signals from com-
piler diagnostics and execution traces is necessary
to guide models through complex reasoning steps.

Data leakage and contamination. As bench-
marks approach saturation, evaluation validity is
compromised by data leakage. Future frameworks
must strictly enforce decontamination protocols to
ensure fairness and reliability.

Lack of universality across SE domains. While
current issue resolution tasks mirror development
workflows, they represent only a fraction of the full
Software Development Life Cycle (SDLC). Future
research should broaden the scope of issue reso-
lution tasks to develop more versatile automated
software generation methods.

8 Conclusion

In this paper, we conduct a systematic survey of
Issue Resolution. We offer a comprehensive review
of this domain. Specifically, we summarize the
rapidly growing ecosystem of data, methods, and
analysis through a meticulous taxonomy that offers
novel perspectives. Moreover, we delve into the
current frontiers, delineate the key challenges and
future directions, and engage in a discussion about
open problems and critical analyses. To the best
of our knowledge, this paper is the first systematic
survey dedicated specifically to this domain. We
hope that this survey serves as an introduction for
researchers and fosters future research in this area.

9 Limitations

As the first dedicated survey on Issue Resolution,
we prioritize high-level summaries over exhaus-
tive details due to space constraints. Our search
methodology relied on citation tracking (e.g., of
SWE-bench) and snowballing; while thorough, this
may overlook niche or nascent works. To address
this rapid evolution, we commit to continuously
updating our open-source repository.
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A Appendix

A.1 Related work
Code generation. The application of LLMs in
the programming domain has witnessed explo-
sive growth. Early research focused primarily on
function-level code generation, with benchmarks
such as HumanEval (Chen et al., 2021) serving as
standard metrics. However, generic benchmarks
often fail to capture the nuances of real-world
development. To bridge this gap, recent initia-
tives (Zheng et al., 2025; Li et al., 2025c) have
attempted to extend evaluation tasks to align more
closely with realistic software development scenar-
ios, revealing the limitations of general models in
specialized domains. Concurrently, methods are
also evolving to capture these broader contexts.
While foundational approaches primarily relied
on SFT (Liu et al., 2024a) or standard retrieval-
augmented generation (Wu et al., 2024; Wang et al.,
2025k), RL-based methods emerged as a pivotal
direction for handling complex coding tasks (Wang
et al., 2025h).

Automated software generation. The primary
goal of this task is to autonomously construct
complete and executable software systems start-
ing from high-level natural language requirements.
Unlike code completion, it necessitates covering
the SDLC, including requirement analysis, sys-
tem design, coding, and testing. To address the
complexity and potential logic inconsistencies in
this process, state-of-the-art frameworks like Chat-
Dev (Qian et al., 2024) and MetaGPT (Hong et al.,
2024) leverage multi-agent collaboration, simulat-
ing human development teams to decompose com-
plex tasks into streamlined and verifiable work-
flows.

Automated software maintenance. Issue res-
olution is intrinsically linked to the broader do-
main of automated software maintenance. Method-
ologies established in this field are frequently en-
capsulated as callable tools to augment the capa-
bilities of LLMs in software development tasks.
Key techniques utilized to enhance LLM perfor-
mance include fault localization approaches such
as SBFL (Wong et al., 2016; Zhou et al., 2012; Qi
et al., 2022; Hu et al., 2014), code search (Zhang
et al., 2025g), and test generation (Ahmed et al.,
2024; Mündler et al., 2024). These tools provide
agents with precise error locations, relevant code
context, and verification mechanisms necessary for

effective resolution. Furthermore, recent research
has expanded the scope of automated software
maintenance by utilizing issue resolution data to
construct dialogue datasets that capture real-world
human-computer collaboration (Garg et al., 2025).

Related surveys. Existing surveys primarily fo-
cus on code generation (Jiang et al., 2024; Wang
et al., 2025b) or other tasks within the software en-
gineering domain (Huang et al., 2023; Zhang et al.,
2023; Guo et al., 2025a; Wang et al., 2025i). This
paper bridges this gap by offering the first system-
atic survey dedicated to the entire spectrum of Issue
Resolution, ranging from non-agent approaches to
the latest agentic advancements.

A.2 Detailed discussions on background
The Issue Resolution task aims to automatically re-
solve reported issues. As illustrated in Figure 1 , it
is formally defined by an instance represented as a
triple I = (D, C, T ), where these components map
directly to the benchmark’s metadata structure:

• D: Issue description, which is the original
GitHub issue text description detailing the bug
or feature request.

• C: Codebase, the collection of source files at
the specific commit state before the issue was
resolved. This state is precisely defined by the
repository identifier (owner/repo) and a base
commit hash, requiring the evaluation environ-
ment to perform a git clone and subsequent git
checkout to establish the exact pre-fix version.

• T : Tests, the complete set of unit and sys-
tem tests associated with the issue, derived
from the original developer’s test patch. This
set is explicitly categorized into two subsets:
Tfail→pass, containing tests that fail on C and
must pass after the patch (verifying the fix),
and Tpass→pass, containing tests that must
pass both before and after (ensuring no re-
gression).

Given only the inputs (D, C), the model proposes
an edit to resolve the issue. The model’s output is
a Patch P (represented as a patch file). (The target
solution is the gold patch provided in the dataset,
which is not revealed to the model). The patch P
must be successfully applied to C using a standard
patch application utility. The codebase resulting
from this application is C′. Crucially, the tests T
are not revealed to the model during this process.



Evaluation. To evaluate a proposed solution
(patch P), it is first applied to the original code-
base C to obtain C′. The repository’s test suite T
is then executed on C′. The evaluation framework
captures the output in a test log, which is subse-
quently processed by a log parser to determine the
test results (e.g., pass or fail). Based on the parsed
results, the solution is scored: it is considered suc-
cessful if the patch applies correctly and all tests in
T pass. The final benchmark metric is the Resolve
Rate, defined as the percentage of tasks that are
successfully resolved.

Data Construction. This process is structured
into four main stages.

First, (1) Repo Selection and Data Scraping in-
volves collecting a large set of PRs from popular,
well-maintained open-source repositories (e.g., 12
popular Python repositories for the original SWE-
bench).

Second, (2) Attribute-based Filtering narrows
down the candidates, selecting only merged PRs
that are documented to resolve a specific GitHub is-
sue and that make modifications to the repository’s
test files (indicating that tests were contributed).

Third, (3) Execution-based Filtering is a criti-
cal stage that ensures tasks are reproducible and
valid. To guarantee reliable environment construc-
tion, recent works increasingly leverage CI/CD
configurations—specifically GitHub Actions work-
flows found under .github/workflows/—as the
ground truth for dependency management. For in-
stance, Multi-SWE-bench (Zan et al., 2025) ex-
tracts build steps from these workflows to cre-
ate isolated Dockerized environments. Similarly,
SWE-Sharp-Bench (Mhatre et al., 2025) confirms
build viability by executing local GitHub Actions
workflows, ensuring the repository successfully
builds and passes tests at the latest commit. By
filtering out instances that fail these automated in-
stallation or runtime checks, this stage establishes
a stable foundation. Finally, it verifies the PR’s
corrective nature by executing the test suite be-
fore and after applying the patch, retaining only
instances that demonstrate at least one clear Fail-
to-Pass (F2P) test transition.

Finally, (4) Manual Verification is performed to
ensure the quality and usability of the filtered tasks.
This step often involves human inspection to check
for the clarity of the problem description (issue),
the self-contained nature of the task, and its overall
suitability for the benchmark.

While this initial pipeline was effective for cre-
ating a static dataset (e.g., the 2,294 SWE-bench
instances), its reliance on a complex, manual-heavy
environment setup (especially in stages 3 and 4)
and its susceptibility to data contamination limited
its long-term scalability and dynamism. Conse-
quently, subsequent research has focused on en-
hancing these data methods, leading to two major
axes of improvement: Data Collection for building
more dynamic benchmarks, and Data Synthesis for
creating high-quality synthetic datasets for training
large language models.

A.3 Detailed discussions on Data

Table 1 provides a comprehensive survey of the
rapidly evolving domain of SWE-bench related
datasets. While the original SWE-bench and its re-
fined iterations (such as SWE-bench Lite and SWE-
bench Verified) set the standard for Python-based
issue resolution, recent works have significantly
expanded the scope of evaluation along three main
axes: language diversity, modality, and scale.

Multilingual Expansion. A major limitation of
early benchmarks was their exclusive focus on
Python. To address this, datasets such as SWE-
bench-java, Multi-SWE-bench, SWE-bench Multi-
lingual, and SWE-PolyBench have been introduced.
These datasets extend evaluation capabilities to a
wide array of popular languages including Java,
C++, Go, Rust, JavaScript, and TypeScript, encom-
passing thousands of repositories to test the gener-
alization ability of agents across different syntaxes
and ecosystems.

Multimodality. Recognizing that modern soft-
ware development often involves visual elements
(particularly in frontend development), datasets
like SWE-bench Multimodal, CodeV, and Omni-
GIRL have incorporated visual contexts. These
benchmarks require agents to process not only code
and text but also visual data, targeting languages
like HTML, CSS, and TypeScript.

Scale and Training Resources. To support the
training of more robust agents, several large-scale
datasets have been curated. SWE-Smith, SWE-
Fixer, and SWE-bench-extra dramatically increase
the volume of data, offering up to 115k instances
(in the case of SWE-Fixer). Notably, as indicated
in the "Environment" column, the field is shifting
towards execution-based validation; unlike earlier
static datasets, the majority of recent benchmarks



Dataset Language Multimodal Repos Amount Environment Link

SWE-bench-train Python ✗ 37 19k ✗ §

SWE-bench Python ✗ 12 2294 ✓ §

SWE-bench Lite Python ✗ 12 300 ✓ §

SWE-bench Verified Python ✗ / 500 ✓ §

SWE-bench-java Java ✗ 19 1797 ✓ §

SWE-bench Multimodal JS,TS,HTML,CSS ✓ 17 619 ✓ §

SWE-bench-extra Python ✗ 2k 6.38k ✓

Visual SWE-bench Python ✓ 11 133 ✓ §

SWE-Lancer JS, TS ✗ / 1488 ✓ §

Multi-SWE-bench Java, JS, TS, Go, Rust, C,
C++

✗ 76 4,723 ✓ §

R2E-Gym Python ✗ 10 8,135 ✓ §

SWE-PolyBench Python, Java, JS, TS ✗ 21 2110 ✓ §

Loc-Bench Python ✗ / 560 ✗ §

SWE-smith Python ✗ 128 50k ✓ §

SWE-bench Multilingual C, C++, Go, Java, JS, TS,
Rust, Python, Ruby, PHP

✗ 42 300 ✓ §

SWE-Fixer Python ✗ 856 115406 ✗ §

OmniGIRL Python, TS, Java, JS ✓ 15 959 ✓ §

SWE-rebench Python ✗ 30,000 21,336 ✓

SWE-bench-Live Python ✗ 93 1319 ✓ §

SWE-Gym Python ✗ 11 2,438 ✓ §

SWE-Flow Python ✗ 74 18081 ✓ §

SWE-Factory Python, Java, JS, TS ✗ 12 430 ✓ §

SWE-Bench-CL Python ✗ 8 273 ✓ §

Skywork-SWE Python ✗ 2531 10169 ✓ /
SWE-MERA Python ✗ 200 300 ✓ §

SWE-Perf Python ✗ 12 140 ✓ §

RepoForge Python ✗ / 7.3k ✓ /
SWE-Mirror Python, Rust, Go ✗ 40 60k ✓ /
SWE-Bench Pro Go, TS, Python ✗ 41 1865 ✓ §

SWE-InfraBench Python, TS ✗ / 100 ✓ /
SWE-Sharp-Bench C# ✗ 17 150 ✓ §

SWE-fficiency Python, Cython ✗ 9 498 ✓ §

SWE-Compass Python, JS, TS, Java, C, C++,
Go, Rust, Kotlin, C#

✗ / 2000 ✓ §

SWE-bench++ Python, Go, TS, JS, Ruby,
PHP, Java, Rust, C++, C#, C

✗ 3,971 1,782 ✓ §

SWE-EVO Python ✗ 7 48 ✓ §

Table 1: A comprehensive survey and statistical overview of issue resolution datasets. We categorize these
datasetsbased on programming language, modality support, source repositories, data scale (Amount), and the
availability ofreproducible execution environments.

now provide reproducible dockerized environments
to rigorously verify agent generated patches.

A.4 Detailed discussions on training methods

Table 3 provides a comprehensive overview of re-
cent SFT-based approaches.

Table 4 categorizes specialized models that have
undergone further alignment, predominantly via
Reinforcement Learning. The table sorts models
by parameter size, revealing that smaller, dense
models (e.g., 7B-32B) can achieve competitive per-
formance against larger baselines when optimized
with domain-specific rewards. The trends observed
in the Reward column align with the design prin-
ciples detailed in Section 4.2.2. While sparse out-
come rewards based on test verification constitute
the predominant approach, the data reveals a grow-
ing integration of process rewards. These dense
feedback signals prove critical for stabilizing the
training of smaller models during long-horizon

tasks, thereby addressing the sparse signal chal-
lenges associated with complex repository-level de-
bugging. Additionally, the heterogeneity observed
in the Training Scaffolds category indicates a ten-
dency to deploy RL atop established agent frame-
works to enhance decision-making policies.

Finally, Table 5 lists general-purpose foundation
models evaluated on issue resolution (Zhan et al.,
2025; Seed et al., 2025; DeepSeek-AI et al., 2025;
Team et al., 2025a; Yang et al., 2025a; Zeng et al.,
2025a; Agarwal et al., 2025; Chen et al., 2025a;
Team et al., 2025b). In contrast to the specialized
models above, these systems rely entirely on exter-
nal inference scaffolds to bridge the gap between
general reasoning and repository-level engineering.
This comparison serves as a control group, high-
lighting the specific performance gains attributable
to the SFT and RL pipelines described in Section
4.2.
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Dataset Language Repos Amount Link

R2E-Gym Python 10 3,321 §

SWE-Gym Python 11 491 §

SWE-Synth Python 11 3,018 §

SWE-Fixer Python 856 69,752 §

SWE-Factory Python 10 2,809 §

Table 2: A survey of trajectory datasets used for agent training or analysis. We list the programming language,
number of source repositories, and total trajectories for each dataset.

Model Name Base Model Size Arch. Training Scaffold Res.(%) Code Data Model

Devstral Mistral Small 3 22B Dense OpenHands 46.8 / �

Co-PatcheR Qwen2.5-Coder 14B Dense Agentless-mini, PatchPilot 46.0 § /

SWE-Swiss-32B Qwen2.5-32B-Instruct 32B Dense Agentless 45.0 §

Lingma SWE-GPT Qwen2.5-Instruct/Coder 72B/7B Dense SWESynInfer 30.2 § / /

SWE-Gym-Qwen-32B Qwen2.5-Coder-32B 32B Dense OpenHands, MoatlessTools 20.6 § /

SWE-Gym-Qwen-14B Qwen2.5-Coder-14B 14B Dense OpenHands, MoatlessTools 16.4 § /

SWE-Gym-Qwen-7B Qwen2.5-Coder-7B 7B Dense OpenHands, MoatlessTools 10.6 § /

Table 3: Overview of SFT-based methods for issue resolution. This table categorizes models by their base
architecture and training scaffold (Sorted by Performance).

A.5 Detailed discussions on applications

The evolution of AI in software engineering is char-
acterized by four distinct stages of increasing au-
tonomy and architectural sophistication:

Stage 1: Developer Augmentation. The initial
phase is dominated by AI pair programmers, such
as GitHub Copilot, which integrate directly into In-
tegrated Development Environments (IDEs). These
tools focus on real-time code completion and sug-
gestions. Empirical evidence from enterprise adop-
tion, such as at Accenture, indicates that these as-
sistants can increase developer productivity by up
to 55%, leading to widespread implementation at
major technology firms like Shopify.

Stage 2: Workflow Automation. The subse-
quent level introduces AI junior developers, repre-
sented by tools like Sweep AI. These agents auto-
mate the asynchronous lifecycle of software main-
tenance. Unlike isolated code completions, they
autonomously parse GitHub issues, analyze the rel-
evant codebase, generate necessary modifications,
and submit complete pull requests for human re-
view, effectively handling routine engineering tasks
without constant supervision.

Stage 3: End-to-End Autonomy. The most ad-
vanced operational stage involves fully autonomous
agents like Devin. Functioning within secure sand-
boxed environments equipped with a shell, editor,

and browser, these agents handle complex multi-
step engineering tasks ranging from planning to
execution. Their industrial impact is significant;
for instance, during a major code migration at the
fintech company Nubank, such autonomous agents
reportedly achieved a 12x improvement in engineer-
ing efficiency compared to traditional methods.

Stage 4: Ecosystem Integration. The latest
trend emphasizes platform interoperability and
compliance. Emerging tools like Claude Code
focus on embedding AI capabilities into existing
enterprise workflows with rigorous security gov-
ernance. Concurrently, platforms like Trae utilize
the Model Context Protocol (MCP) to orchestrate
multi-agent architectures, fostering an extensible
ecosystem where diverse AI tools can collaborate
seamlessly.

https://github.com/R2E-Gym/R2E-Gym
https://huggingface.co/datasets/R2E-Gym/R2EGym-SFT-Trajectories
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/datasets/SWE-Gym/OpenHands-SFT-Trajectories
https://github.com/FSoft-AI4Code/SWE-Synth
https://huggingface.co/datasets/swesynth/SWE-Synth_Moatless-SFT-Trajectories
https://github.com/InternLM/SWE-Fixer
https://huggingface.co/datasets/internlm/SWE-Fixer-Train-Editing-CoT-70K
https://github.com/DeepSoftwareAnalytics/swe-factory
https://huggingface.co/datasets/SWE-Factory/DeepSWE-Agent-Kimi-K2-Trajectories-2.8K
https://mistral.ai/news/devstral
https://huggingface.co/mistralai/Devstral-Small-2507
https://github.com/ucsb-mlsec/Co-PatcheR
https://huggingface.co/collections/UCSB-SURFI/co-patcher
https://github.com/zhenyuhe00/SWE-Swiss
https://huggingface.co/SWE-Swiss/datasets
https://huggingface.co/SWE-Swiss/models
https://github.com/LingmaTongyi/Lingma-SWE-GPT
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/SWE-Gym
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/SWE-Gym
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/SWE-Gym


Model Name Base Model Size Arch. Train. Scaffold Reward Res.(%) Code Data Model

560B Models (MoE)

LongCat-Flash-Think LongCatFlash-Base 560B-A27B MoE R2E-Gym Outcome 60.4 § /
72B Models

Kimi-Dev Qwen 2.5-72B-Base 72B Dense BugFixer + TestWriter Outcome 60.4 § /
Multi-turn RL(Nebius) Qwen2.5-72B-

Instruct
72B Dense SWE-agent Outcome 39.0 / / /

Agent-RLVR-RM-72B Qwen2.5-Coder-72B 72B Dense Localization + Repair Outcome 27.8 / / /
Agent-RLVR-72B Qwen2.5-Coder-72B 72B Dense Localization + Repair Outcome 22.4 / / /

70B Models

SWE-RL Llama-3.3-70B-
Instruct

70B Dense Agentless-mini Outcome 41.0 § / /

36B Models

FoldAgent Seed-OSS-36B-
Instruct

36B Dense FoldAgent Process 58.0 § � /

32B Models

OpenHands Critic Qwen2.5-Coder-32B 32B Dense SWE-Gym / 66.4 § /
KAT-Dev-32B Qwen3-32B 32B Dense / / 62.4 / /
SWE-Swiss-32B Qwen2.5-32B-

Instruct
32B Dense / Outcome 60.2 §

SeamlessFlow-32B Qwen3-32B 32B Dense SWE-agent Outcome 45.8 § / /
DeepSWE Qwen3-32B 32B Dense R2E-Gym Outcome 42.2 §

SA-SWE-32B / 32B Dense SkyRL-Agent / 39.4 / / /
OpenHands LM v0.1 Qwen2.5-Coder-32B 32B Dense SWE-Gym / 37.2 § /
SWE-Dev-32B Qwen2.5-Coder-32B 32B Dense OpenHands Outcome 36.6 § /
Satori-SWE Qwen2.5-Coder-32B 32B Dense Retriever + Code editor Outcome 35.8 §

SoRFT-32B Qwen2.5-Coder-32B 32B Dense Agentless Outcome 30.8 / / /
Agent-RLVR-32B Qwen2.5-Coder-32B 32B Dense Localization + Repair Outcome 21.6 / / /

14B Models

Agent-RLVR-14B Qwen2.5-Coder-14B 14B Dense Localization + Repair Outcome 18.0 / / /
SEAlign-14B Qwen2.5-Coder-14B 14B Dense OpenHands Process 17.7 / / /

9B Models

SWE-Dev-9B GLM-4-9B 9B Dense OpenHands Outcome 13.6 § /
8B Models

SeamlessFlow-8B Qwen3-8B 8B Dense SWE-agent Outcome 27.4 § / /
SWE-Dev-8B Llama-3.1-8B 8B Dense OpenHands Outcome 18.0 § /

7B Models

SWE-Dev-7B Qwen2.5-Coder-7B 7B Dense OpenHands Outcome 23.4 § /
SoRFT-7B Qwen2.5-Coder-7B 7B Dense Agentless Outcome 21.4 / / /
SEAlign-7B Qwen2.5-Coder-7B 7B Dense OpenHands Process 15.0 / / /

Table 4: A comprehensive overview of specialized models for issue resolution, categorized by parameter size.
The table details each model’s base architecture, the training scaffold used for rollout, the type of reward signal
employed (Outcome vs. Process), and their performance results (Res. %) on issue resolution benchmarks.

Model Name Size Arch. Inf. Scaffold Reward Res.(%) Code Model

KAT-Coder / / Claude Code Outcome 73.4 / �

Deepseek V3.2 671B-A37B MoE Claude Code, RooCode / 73.1 §

Kimi-K2-Instruct 1T MoE Agentless Outcome 71.6 /

Qwen3-Coder 480B-A35B MoE OpenHands Outcome 69.6 §

GLM-4.6 355B-A32B MoE OpenHands Outcome 68.0 /

gpt-oss-120b 116.8B-A5.1B MoE Internal tool Outcome 62.0 §

Minimax M2 230B-10B MoE R2E-Gym Outcome 61.0 §

gpt-oss-20b 20.9B-A3.6B MoE Internal tool Outcome 60.0 §

GLM-4.5-Air 106B-A12B MoE OpenHands Outcome 57.6 / /

Minimax M1-80k 456B-A45.9B MoE Agentless Outcome 56.0 § �

Minimax M1-40k 456B-A45.9B MoE Agentless Outcome 55.6 § �

Seed1.5-Thinking 200B-A20B MoE / Outcome 47.0 § /

Llama 4 Maverick 400B-A17B MoE mini-SWE-agent Outcome 21.0 §

Llama 4 Scout 109B-17B MoE mini-SWE-agent Outcome 9.1 §

Table 5: Overview of general foundation models evaluated on issue resolution. The table details the specific
inference scaffolds (e.g., OpenHands, Agentless) employed during the evaluation process to achieve the reported
results.
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