
Advances and Frontiers of LLM-based Issue Resolution in Software
Engineering: A Comprehensive Survey

Caihua Li1, Lianghong Guo1, Yanlin Wang1*, Daya Guo1, Wei Tao2*, Zhenyu Shan3, Mingwei Liu1,
Jiachi Chen4, Haoyu Song5, Duyu Tang5, Hongyu Zhang6, Zibin Zheng1

1Sun Yat-sen University, 2Independent Researcher, 3Hangzhou Normal University,
4Zhejiang University, 5Huawei Technologies Co, Ltd, 6Chongqing University

{lich535, guolh8, guody5}@mail2.sysu.edu.cn, {wangylin36, zhzibin}@mail.sysu.edu.cn,
wtao@ieee.org, 20100119@hznu.edu.cn, chenjiachi317@gmail.com,

{songhaoyu1, tangduyu}@huawei.com, hyzhang@cqu.edu.cn

Abstract

Issue resolution, a complex Software Engineer-
ing (SWE) task integral to real-world develop-
ment, has emerged as a compelling challenge
for artificial intelligence. The establishment of
benchmarks like SWE-bench revealed this task
as profoundly difficult for large language mod-
els, thereby significantly accelerating the evo-
lution of autonomous coding agents. This pa-
per presents a systematic survey of this emerg-
ing domain. We begin by examining data con-
struction pipelines, covering automated collec-
tion and synthesis approaches. We then pro-
vide a comprehensive analysis of methodolo-
gies, spanning training-free frameworks with
their modular components to training-based
techniques, including supervised fine-tuning
and reinforcement learning. Subsequently, we
discuss critical analyses of data quality and
agent behavior, alongside practical applications.
Finally, we identify key challenges and out-
line promising directions for future research.
An open-source repository is maintained at
https://github.com/DeepSoftwareAnaly
tics/Awesome-Issue-Resolution to serve
as a dynamic resource in this field.

1 Introduction

The vision of constructing a true AI software en-
gineer has long been an appealing prospect in
computer science. In pursuit of this, researchers
initially relied on function-level code generation
benchmarks such as HumanEval (Chen et al., 2021).
Driven by the remarkable success of Large Lan-
guage Models (LLMs), the prospect of automat-
ing software engineering to function akin to a hu-
man developer has become increasingly attainable.
However, they often struggle to handle the dynamic
interactions with development environments and
human collaboration in realistic scenarios. To ad-
dress this limitation and align evaluation with au-
thentic software development scenarios, Jimenez

*Corresponding authors.

Tests �

Problem Statement �
data leak in GBDT due to warm...

Issue Resolution Methods

Codebase �

gradient_boosting.py

sklearn

Generated Patch �
+12 -20

gradient_boosting.py
...

...

Input

Apply

Generate

Evaluation

Parse Test Logs

Output
Resolved Rate

Judge

...

Pass

Fail

Pass

Run

1

2

3

4

5
6 7

SWE-agent Agentless OpenHands

AutoCodeRover
...

Claude Code

%

Trae Agent Environment �
> search gradient_boosting.py
The file is in ./sklearn!...

Trae Agent

Figure 1: Issue Resolution

et al. (2024) introduced SWE-bench and defined
the task of issue resolution. This task requires an
automatic approach to help LLMs navigate com-
plex, multi-file repositories to resolve issues in
GitHub (see Figure 1 and Section 2). By revealing
the difficulty of repository-level engineering, SWE-
bench catalyzed a research frontier focused on nav-
igating and modifying complex environments (Pan
et al., 2025a). It marks a departure from initial
software generation as explored in ChatDev (Qian
et al., 2024) and MetaGPT (Hong et al., 2024), to
the subsequent stages of software maintenance and
evolution.

Despite the surge of research in this new fron-
tier, the literature remains fragmented. Current
surveys primarily focus on code generation, failing
to address the far more complex challenge of issue
resolution. This paper aims to bridge this gap by
providing the first in-depth survey of this domain.

We conducted a comprehensive survey of pub-
licly available literature, including 135 papers and
online resources relevant to issue resolution. We
established a tailored classification framework to
provide a structured perspective on this rapidly

https://github.com/DeepSoftwareAnalytics/Awesome-Issue-Resolution
https://github.com/DeepSoftwareAnalytics/Awesome-Issue-Resolution

evolving domain. Consequently, our contributions
can be summarized as follows: We present a sys-
tematic survey on issue resolution, organized by
a structured taxonomy covering Data, Methods,
and Analysis. Furthermore, we identify key chal-
lenges and future directions, and provide a open-
source repository to support the community.

2 Task formulation

Issue resolution requires LLMs to synthesize a
valid code change (also called a patch) P to re-
solve the issue, interacting with a codebase (as
shown in Figure 1). Formally, an instance of the
task can be expressed as I = (D, C, T), compris-
ing an issue description D, the codebase C, and a
corresponding test T . The observable parts of the
instance, including D and C, are available during
the resolving process, which contains supplemen-
tary information on the corresponding environment
E that can be explored. So a method M is expected
to achieve:

P = M(D, C, E) (1)

After the patch P is applied to C, the evaluation
is conducted through running tests on the modi-
fied codebase C′ = Apply(C,P). The resolution
outcome r ∈ {0, 1} is then determined by the exe-
cution of T , denoted as Exec(C′, T). On a dataset
including n instances(I = {Ii}Ni=1), overall perfor-
mance metric is:

Resolved Rate =
1

|I|

|I|∑
i=1

ri (2)

3 Data

Data is fundamental to the issue-resolution task,
serving as both an evaluation benchmark and a
training resource. Thus, datasets are classified into
evaluation datasets (§ 3.1.1) and training datasets
(§ 3.1.2). Construction approaches are divided
into two types: data collection (§ 3.2.1) from real-
world online sources, and data synthesis (§ 3.2.2)
achieved by rewriting real-world data or rule-based
generation. Statistics for all datasets are provided
in § A.3.

3.1 Datasets
3.1.1 Evaluation datasets
SWE-bench (Jimenez et al., 2024) established the
datasets by collecting issue–Pull Request (PR)

pairs from popular Python repositories, pairing
each issue with a full repository snapshot for reso-
lution. However, invalid tests and underspecified
descriptions in the original dataset make many in-
stances unsuitable for evaluation. To address this
issue and ensure data quality, SWE-bench Veri-
fied (OpenAI, 2024) was introduced, offering a
subset of manually validated samples as a trusted
benchmark.

While most evaluation datasets target Python,
researchers extend these tasks to ten different
programming languages to broaden the linguis-
tic scope, as seen in SWE-bench Multilingual and
Multi-SWE-bench, et al. (Zan et al., 2024, 2025;
Rashid et al., 2025; Guo et al., 2025b; Yang et al.,
2025c; Mhatre et al., 2025). To address the limita-
tion of relying solely on textual data, researchers
have focused on aggregating multimodal infor-
mation, primarily derived from images such as
UI screenshots and diagrams (Yang et al., 2024b;
Zhang et al., 2025e; Guo et al., 2025b). For in-
stance, Yang et al. (2024b) integrates these visual
contexts and introduces a novel visual tester to val-
idate the correctness of visual modifications.

To bridge the significant gap between initial eval-
uation datasets and realistic software development
scenarios, researchers introduced datasets (Mis-
erendino et al., 2025; Deng et al., 2025; Tarasova
et al., 2025) that incorporate enterprise-level com-
plexity and diverse domains. Recent advancements
have also shifted towards refining metrics for issue
resolution, such as efficiency and safety (He et al.,
2025a; Ma et al., 2025a; Xu et al., 2025a).

3.1.2 Training datasets

Textual data The initial training data typically
consists of raw task instances in the form of static
issue-PR, as exemplified by the training set in SWE-
bench (Jimenez et al., 2024), to equip models with
fundamental capabilities to resolve issues before
they engage with interactive environments.

Training Environment Environment datasets
aim to address the limitations of static text by con-
structing interactive code environments that pro-
vide LLMs with execution feedback. In early initia-
tives, researchers attempted to equip each data in-
stance with a corresponding Conda or Docker envi-
ronment, enabling LLMs to incorporate code execu-
tion results as feedback during the training process,
as seen in benchmarks like Multi-SWE-RL (Zan
et al., 2025). Nevertheless, these datasets often

Is
su

e
R

es
ol

ut
io

n

Data
(§3)

Datasets
(§3.1)

Evaluation Datasets
(§3.1.1), Table 1

SWE-bench (Jimenez et al., 2024), SWE-bench Lite (Jimenez et al., 2024), SWE-bench Verified (OpenAI, 2024),
SWE-bench-java (Zan et al., 2024), Visual SWE-bench (Zhang et al., 2025e), SWE-Lancer (Miserendino et al., 2025),
Multi-SWE-bench (Zan et al., 2025), SWE-PolyBench (Rashid et al., 2025), SWE-bench Multilingual (Yang et al., 2025c),
SwingArena (Xu et al., 2025b), SWE-bench Multimodal (Yang et al., 2024b), OmniGIRL (Guo et al., 2025b),
SWE-bench-Live (Zhang et al., 2025d), SWE-Factory (Guo et al., 2025c), SWE-MERA (Adamenko et al., 2025),
SWE-Perf (He et al., 2025a), SWE-Bench Pro (Deng et al., 2025), SWE-InfraBench (Tarasova et al., 2025),
SWE-Sharp-Bench (Mhatre et al., 2025), SWE-fficiency (Ma et al., 2025a), SWE-Compass (Xu et al., 2025a),
SWE-Bench++ (Wang et al., 2025f), SWE-EVO (Thai et al., 2025).

Training Datasets
(§3.1.2)

SWE-bench-train (Jimenez et al., 2024), SWE-bench-extra (Jimenez et al., 2024), Multi-SWE-RL (Zan et al., 2025),
R2E-Gym (Jain et al., 2025), SWE-Synth (Pham et al., 2025), LocAgent (Yu et al., 2025b),
SWE-Smith (Yang et al., 2025c), SWE-Fixer (Xie et al., 2025), SWELoc (Reddy et al., 2025),
SWE-Gym (Pan et al., 2025a), SWE-Flow (Zhang et al., 2025c), SWE-Factory (Guo et al., 2025c),
Skywork-SWE (Zeng et al., 2025c), RepoForge (Chen et al., 2025e), SWE-Mirror (Wang et al., 2025e),
SWE-Bench++ (Wang et al., 2025f).

Data Construction
(§3.2)

Automated data
Collection (§3.2.1)

SWE-rebench (Badertdinov et al., 2025), RepoLaunch (Zhang et al., 2025d), SWE-Factory (Guo et al., 2025c),
SWE-MERA (Adamenko et al., 2025), RepoForge (Chen et al., 2025e), Multi-Docker-Eval (Fu et al., 2025).

Automated data
Synthesis (§3.2.2)

Learn-by-interact (SU et al., 2025), R2E-Gym (Jain et al., 2025), SWE-Synth (Pham et al., 2025),
SWE-smith (Yang et al., 2025c), SWE-Flow (Zhang et al., 2025c), SWE-Mirror (Wang et al., 2025e).

Methods
(§4)

Training-free
Methods
(§4.1)

Frameworks
(§4.1.1)

Single-agent
(§4.1.1)

SWE-agent (Yang et al., 2024a), PatchPilot (Li et al., 2025b), LCLM (Jiang et al., 2025a),
DGM (Zhang et al., 2025a), SE-Agent (Lin et al., 2025), TOM-SWE (Zhou et al., 2025),
Live-SWE-agent (Lin et al., 2025).

Multi-agent
(§4.1.1)

MAGIS (Tao et al., 2024), AutoCodeRover (Zhang et al., 2024b), CodeR (Chen et al., 2024),
OpenHands (Wang et al., 2025g), OrcaLora (Yu et al., 2025b), DEI (Zhang et al., 2024a),
MarsCode Agent (Liu et al., 2024b), SWE-Search (Antoniades et al., 2025), CodeCoR (Pan et al., 2025b),
Agent KB (Tang et al., 2025a), SWE-Debate (Li et al., 2025a), SWE-Exp (Chen et al., 2025b),
Trae Agent (Team et al., 2025c), Meta-RAG (Tawosi et al., 2025),

Workflow
(§4.1.1)

Agentless (Xia et al., 2024), Conversational Pipeline (Cheshkov et al., 2024), SynFix (Tang et al., 2025b),
CodeV (Zhang et al., 2025e), GUIRepair (Huang et al., 2025).

Modules
(§4.1.1)

Tool
(§4.1.2)

MAGIS (Tao et al., 2024), AutoCodeRover (Zhang et al., 2024b), SWE-agent (Yang et al., 2024a),
Alibaba LingmaAgent (Ma et al., 2025b), OpenHands (Wang et al., 2025g), SpecRover (Ruan et al., 2025),
MarsCode Agent (Liu et al., 2024b), RepoGraph (Ouyang et al., 2025b), SuperCoder2.0 (Gautam et al., 2024),
EvoCoder (Lin et al., 2024), AEGIS (Wang et al., 2024), OrcaLoca (Yu et al., 2025b), Otter (Ahmed et al., 2025a),
CoRNStack (Suresh et al., 2025), Issue2Test (Nashid et al., 2025), KGCompass (Yang et al., 2025b),
CoSIL (Jiang et al., 2025b), InfantAgent-Next (Lei et al., 2025), Co-PatcheR (Tang et al., 2025c),
SWERank (Reddy et al., 2025), Nemotron-CORTEXA (Sohrabizadeh et al., 2025), LCLM (Jiang et al., 2025a),
SACL (Gupta et al., 2025), SWE-Debate (Li et al., 2025a), OpenHands-Versa (Soni et al., 2025),
Repeton (Vinh et al., 2025), cAST (Zhang et al., 2025f), Prometheus (Chen et al., 2025f),
Git Context Controller (Wu, 2025), Trae Agent (Team et al., 2025c), TestPrune (Chen et al., 2025c),
e-Otter++ (Ahmed et al., 2025b), Meta-RAG (Tawosi et al., 2025),

Memory
(§4.1.3)

Infant Agent (Lei et al., 2024), EvoCoder (Lin et al., 2024), Learn-by-interact (SU et al., 2025),
DGM (Zhang et al., 2025a), ExpeRepair (Mu et al., 2025), Agent KB (Tang et al., 2025a),
SWE-Exp (Chen et al., 2025b), RepoMem (Wang et al., 2025a), ReasoningBank (Ouyang et al., 2025a).

Inference-time
Scaling (§4.1.4)

SWE-Search (Antoniades et al., 2025), CodeMonkeys (Ehrlich et al., 2025), SWE-PRM (Gandhi et al., 2025),
ReasoningBank (Ehrlich et al., 2025).

Training-based
Methods
(§4.2)

SFT-based
Methods
(§4.2.1)

Lingma SWE-GPT (Ma et al., 2024), Scaling data collection (Nebius, 2024), CodeXEmbed (Liu et al., 2025c),
SWE-Gym (Pan et al., 2025a), TSP (Xiong et al., 2025), Co-PatcheR (Tang et al., 2025c), SWE-Swiss (He et al., 2025b),
Devstral (Rastogi et al., 2025), Kimi-Dev (Yang et al., 2025d), SWE-Compressor (Liu et al., 2025a).

RL-based
Methods
(§4.2.2)

SWE-RL (Wei et al., 2025a), SoRFT (Ma et al., 2025c), SEAlign (Zhang et al., 2025b), SWE-Dev1 (Du et al., 2025),
Satori-SWE (Zeng et al., 2025b), Agent-RLVR (Da et al., 2025), DeepSWE (Luo et al., 2025), SWE-Dev2 (Wang et al., 2025c),
SWE-Swiss (He et al., 2025b), SeamlessFlow (Wang et al., 2025d), DAPO (Golubev et al., 2025), Kimi-Dev (Yang et al., 2025d),
FoldGRPO (Sun et al., 2025), GRPO-based Method (Wang and Ammanabrolu, 2025), Self-play SWE-RL (Wei et al., 2025b),
SWE-RM (Shum et al., 2025).

Analysis
(§5)

Data Analysis
(§5.1)

SWE-bench Verified (OpenAI, 2024), SWE-Bench+ (Aleithan et al., 2024), Patch Correctness (Wang et al., 2025j), UTBoost (Yu et al., 2025a),
Trustworthiness (Mathews and Nagappan, 2025), Rigorous agentic benchmarks (Zhu et al., 2025), The SWE-Bench Illusion (Liang et al., 2025),
Revisiting SWE-Bench (Aleithan, 2025), SPICE (Oliva et al., 2025), Data contamination (Prathifkumar et al., 2025).

Methods Analysis
(§5.2)

Context Retrieval (Kovrigin et al., 2024), Evaluating software development agents (Chen and Jiang, 2025), Overthinking (Cuadron et al., 2025),
Beyond final code (Chen et al., 2025d), GSO (Shetty et al., 2025), Dissecting the SWE-Bench Leaderboards (Martinez and Franch, 2025),
Security analysis (Sajadi et al., 2025), Failures analysis (Liu et al., 2025b), SeaView (Bula et al., 2025), SWEnergy (Tripathy et al., 2025).

Figure 2: Overall perspective on data, methods, and analysis for SWE tasks, featuring corresponding papers.

overlook the specific interface design required for
effective LLM-environment interaction. To address
this, Jain et al. (2025) introduced a more interactive
Gym environment (R2E-Gym) that utilizes LLM-
synthesized test cases to verify environment usabil-
ity, thereby synthesizing large-scale environment
data. Similarly, Pan et al. (2025a) constructed Gym
environments based on real-world GitHub issues.

Trajectories Trajectory datasets capture the pro-
cedural interplay between language models and ex-
ecution environments through tool invocations and
feedback loops (Nebius, 2024; Jain et al., 2025;
Pan et al., 2025a; Pham et al., 2025; Xie et al.,
2025; Guo et al., 2025c)(See § A.3). To obtain
high-quality trajectories, researchers typically em-
ploy inference-time scaling strategies to generate
many candidates, then apply verifiers to filter and

select the best (Nebius, 2024; Yang et al., 2025c).

3.2 Data construction
The construction of training data for software
agents involves transitioning from manual to auto-
mated engineering pipelines. Detailed background
information is provided in § A.2.

3.2.1 Automated data collection
Static datasets often suffer from rigidity, high main-
tenance costs, and limited scale, which impede the
effective training of robust models. In response, the
field is evolving towards scalable, automated data
collection methods. Those automated pipelines
usually leverage LLMs to explore repository con-
figurations, identify files related to environment
setup, and generate corresponding dependency in-
stallation commands to build Docker images for in-

z

z

Tools

Framework

Modules

(b) Training-free Methods

RL

SFT

(c) Training-based Methods

Memory

（a) Data

Datasets
Evaluation
Datasets

Bug Reproduction

Code Search

Patch Generation

Fault Localization

Patch Validation

Test Generation

Misc Tools

Reward

Algorithm
PPO, DPO, GRPO, DAPO...

Outcome

Process

Memory
Storage

Memory
Retrieval

Environment TrajectoriesTextual Data

Training
Datasets Single-agent

Data Construction

Data Collection Data Synthesis

Multi-agent Workflow

Finetuning

Scaffold

with training datasets

Figure 3: A classification overview of data, training-free methods, and training methods for solving SWE tasks.

dividual issues. Subsequently, they employ existing
testing frameworks and predefined log parsers to
analyze test execution results, encompassing both
workflow-based and agent-based paradigms, such
as SWE-rebench and RepoLaunch (Badertdinov
et al., 2025; Zhang et al., 2025d). Notably, SWE-
Factory employs a memory-enhanced framework
for environment setup and verification, while utiliz-
ing an exit-code-based automatic grading method
to design parsers capable of automatically interpret-
ing execution results across diverse testing frame-
works in different programming languages (Guo
et al., 2025c). More recently, RepoForge (Chen
et al., 2025e) enhanced the pipeline’s automation
by incorporating a automatic verification mecha-
nism based on SPICE (Oliva et al., 2025) following
data construction, effectively replacing the need for
human expert validation.

3.2.2 Automated data synthesis

To overcome the challenges of limited real-world
data availability and expensive manual verifica-
tion, researchers have increasingly adopted auto-
mated data synthesis approaches. For instance,
SWE-Synth (Pham et al., 2025) achieves this by
rewriting target code and generating correspond-
ing tests. Drawing on test-driven development,
SWE-Flow (Zhang et al., 2025c) employs a run-
time dependency graph to derive incremental code
and requirement documents directly from unit tests.
More recently, addressing the need to minimize the
storage footprint while scaling, SWE-Smith (Yang
et al., 2025c) expands the dataset by paraphras-
ing descriptions and injecting bugs, leveraging a
shared environment strategy for data derived from
the same source. Similarly, SWE-Mirror (Wang
et al., 2025e) transplants real-world issues into
target repositories, generating verifiable tasks to
further scale the data using shared environmental

configurations.

4 Methods

4.1 Training-free method

To overcome constraints such as fixed context win-
dows and static knowledge, training-free meth-
ods utilizes external components and sophisticated
prompting. As shown in Figure 3, we classify
these methods into three categories based on the
underlying framework: (1) Frameworks, encom-
passing high-level architectures like single-agent,
multi-agent, and fixed-workflow designs; (2) Mod-
ules, providing plug-and-play augmentations such
as Tools for repository interaction and Memory for
experience accumulation; and (3) Inference-time
Scaling(or test-time scaling), employing search or
parallelization strategies to enhance success rates
without modifying model parameters.

4.1.1 Frameworks
To handle the multi-stage execution required for
issue resolution, current research structures LLM
activities into either dynamic agent-based or rigid
workflow-based frameworks.

Single-agent Analogous to software engineers
who write code and invoke diverse tools to resolve
issues, single-agent frameworks were initially con-
structed to execute tasks via tool-based interaction
paradigms. SWE-agent (Yang et al., 2024a) pio-
neers the agent-computer interface, which enables
autonomous file navigation, code editing, and test
execution, bridging natural language understanding
with repository-level operations.

However, granting full autonomy for every deci-
sion often leads to redundant action sequences due
to reasoning imprecision, resulting in prohibitive
operational costs. To address it, Li et al. (2025b)
reduces overhead by either constraining specific

phases into rigid workflows.
To further enhance generalization across diverse

issue types, self-evolutionary frameworks have
emerged to autonomously refine agent capabilities.
For instance, Darwin Gödel Machine employs an
evolutionary process starting from a minimal base-
line, where the LLM generates, scores, and selects
optimal candidate agent implementations over suc-
cessive iterations to evolve its structure (Zhang
et al., 2025a; Xia et al., 2025; Lin et al., 2025).

Multi-agent Introduced concurrently with single-
agent systems, multi-agent frameworks focus
on collaboration and task allocation, often per-
formed in the form of human software develop-
ment team (Tao et al., 2024; Zhang et al., 2024b;
Liu et al., 2024b; Antoniades et al., 2025; Yu
et al., 2025b; Team et al., 2025c). For instance,
MAGIS (Tao et al., 2024) firstly implements this
by assigning agents to roles such as Manager, De-
veloper, and QA Engineer. This setup allows agents
to role-play and autonomously convene meetings
for effective communication.

However, those works primarily used text-based
contexts for information exchange but failed to ex-
plicitly model how agents collaborate. To address
this limitation, CodeR (Chen et al., 2024) tackled
the challenge of unreliable agent collaboration by
introducing task graphs, a formal data structure to
convert a high-level plan into a parsable, directed
graph to ensure precise execution. Also based on
graphs, SWE-Debate (Li et al., 2025a) organizes a
three-round debate among specialized agents, each
embodying distinct reasoning perspectives along
the fault propagation trace in the code dependency
graph to forge a more concrete solution.

With the proliferation of diverse agent frame-
works, recent research has shifted towards con-
structing unified platforms capable of orchestrating
collaboration among agents with varying architec-
tures. (Wang et al., 2025g; Zhang et al., 2024a)For
example, Zhang et al. (2024a). proposed DEIBase,
a framework designed to leverage LLMs to score
and rank solutions generated by multiple agent
frameworks. By integrating multiple agents in this
manner, DEIBase achieves superior performance
compared to single-agent approaches.

Workflow Fixed-workflow architectures improve
stability by enforcing predefined steps instead of
allowing open-ended exploration. Some systems
adopt a linear pipeline—localization, repair, and
validation—to ensure efficiency and reproducibil-

ity (Xia et al., 2024). For visual tasks, researchers
integrate Vision Language Models to directly parse
UI screenshots into code (Zhang et al., 2025e;
Huang et al., 2025). Additionally, to handle com-
plex codebases, recent work utilizes dependency
graphs to guide precise, repository-wide modifica-
tions instead of relying on random search (Tang
et al., 2025b).

4.1.2 Tool modules
In training-free frameworks, LLMs rely on special-
ized tools to augment reasoning without fine-tuning.
These tools are organized by the standard repair
pipeline, progressing from bug reproduction, fault
localization, and code search to patch generation,
validation, and test generation.

Bug reproduction tools. These tools automate
the critical first step of debugging by generating
executable scripts that trigger reported defects. Im-
plementations typically leverage historical inter-
action data to adapt to repository-specific conven-
tions (Lin et al., 2024), or employ Finite State Ma-
chines to govern behavior via multi-dimensional
feedback, as in AEGIS (Wang et al., 2024).

Fault localization tools. Once a bug is repro-
duced, these tools pinpoint suspicious code regions
to narrow the search space. Common approaches
include method-level Spectrum-Based Fault Local-
ization (SBFL) (Zhang et al., 2024b) and graph-
based methods that construct code dependency
graphs to trace fault propagation (Li et al., 2025a).

Code search tools. These tools retrieve relevant
dependency context after localization. Strategies
range from interactive retrieval using BM25 or
AST-based APIs (Tao et al., 2024; Yang et al.,
2024a), to graph-based global understanding via
Knowledge Graphs and Language Server Proto-
cols (Ma et al., 2025b; Liu et al., 2024b), and dy-
namic managers that balance exploration breadth
and depth (Yu et al., 2025b; Jiang et al., 2025b).

Patch generation tools. These tools guide LLM
output quality through structured methodologies.
Key techniques include augmenting input context
via specification inference (Ruan et al., 2025), em-
ploying robust editing formats such as AutoDiff to
bypass line-numbering failures (Yang et al., 2024a;
Liu et al., 2024b), and ensemble selection mech-
anisms that filter candidates via regression test-
ing (Team et al., 2025c).

Patch validation tools. These tools confirm cor-
rectness and prevent regressions through external
verification. Standard approaches include dynamic
execution orchestration using sandboxed environ-
ments (Zhang et al., 2024b; Liu et al., 2024b), and
static analysis mechanisms leveraging QA agents
or Language Server Protocols for immediate diag-
nostic feedback (Tao et al., 2024; Liu et al., 2024b).

Test generation tools. These tools generate re-
production test cases to validate intent and guide
resolution. Systems typically employ feedback-
driven iterative mechanisms that utilize error clas-
sification to synthesize failing tests reproducing
reported defects, as in Otter (Ahmed et al., 2025a)
and Issue2Test (Nashid et al., 2025).

Other extensions. Recent extensions focus on
equipping agents with versatile tools to handle
broader scenarios, including multimodal chal-
lenges. Strategies involve multimodal browsing
and unified information access, which standardizes
heterogeneous data into Markdown for seamless
processing (Soni et al., 2025; Lei et al., 2025).

4.1.3 Memory modules

Memory integration empowers agents to transcend
isolated problem-solving by accumulating histor-
ical context to guide future actions. Initial archi-
tectures focused on establishing hierarchical stor-
age structures, such as segregating general knowl-
edge from repository-specific details to mitigate
rigidity (Lin et al., 2024), or archiving popula-
tions of agent variants to support open-ended evo-
lution (Zhang et al., 2025a). To overcome the
limitations of static prompting, researchers have
subsequently incorporated dual-process cognitive
architectures that synergize episodic records of con-
crete repairs with semantic layers of abstract in-
sight, enabling dynamic retrieval based on current
context (Mu et al., 2025). Current frontiers pri-
oritize distilling transferable reasoning strategies,
effectively shifting the paradigm from storing raw
data to abstracting high-level policies from both
successful and failed trajectories. This evolution
allows agents to leverage multi-faceted experience
banks to guide strategic search frameworks like
MCTS (Chen et al., 2025b) and to prevent error
repetition through generalized, rule-based learn-
ing (Ouyang et al., 2025a).

4.1.4 Inference-time scaling
While specialized tools and memory systems en-
hance specific agent capabilities, relying solely
on linear execution paths often limits the explo-
ration of complex solution spaces. To address this,
inference-time scaling has emerged as a critical
paradigm to expand the search breadth and depth
during problem-solving. To overcome the rigid-
ity of sequential workflows, recent research fo-
cuses on enabling non-linear exploration via Monte
Carlo Tree Search (MCTS), which facilitates flex-
ible backtracking and qualitative feedback loops
to prevent agents from stagnating in repetitive cy-
cles (Antoniades et al., 2025). Complementing
this algorithmic shift, strategies for scaling com-
putational resources deploy multiple independent
state machines in parallel, maximizing solution
coverage while amortizing the high costs of con-
text identification without the need for model re-
training (Ehrlich et al., 2025). Furthermore, ad-
vanced frameworks are now integrating memory-
driven scaling, utilizing time-travel mechanisms
to generate diverse experiences that serve not just
to resolve the immediate task, but to distill gener-
alizable reasoning strategies for long-term agent
evolution (Ouyang et al., 2025a).

4.2 Training-based method

Training-based methods encompass Supervised
Fine-Tuning-based (SFT-based) methods and Rein-
forcement Learning-based (RL) methods, utilizing
resources from Section 3.1.2 to enhance the funda-
mental programming capabilities of LLMs.

4.2.1 SFT-based method
Supervised Fine-Tuning (SFT) serves as the pri-
mary mechanism for grounding base models in
software engineering protocols. Recent efforts to
achieve robust domain adaptation focus on three
key dimensions: (1) Data Scaling. Strategies in-
creasingly prioritize the expansion of data scale
and diversity via synthesized corpora. Frame-
works employ iterative generation and filtering
pipelines—augmented by automatic test gener-
ation or mid-training on billions of GitHub to-
kens—to comprehensively cover diverse repair sce-
narios (Ma et al., 2025b; Wang et al., 2025c; Yang
et al., 2025d). (2) Curriculum Learning. Be-
yond raw volume, research emphasizes multi-stage
curriculum learning. Models are refined through
phased training sequences that progress from broad
trajectory ingestion to strictly filtered, high-quality

subsets or specialized tasks like localization and
testing (He et al., 2025b; Rastogi et al., 2025; Liu
et al., 2025a). (3) Rejection Sampling. To bridge
the gap toward reinforcement learning, current
methods employ rejection sampling pipelines. By
fine-tuning exclusively on successful trajectories,
these methods establish a strong baseline policy
while simultaneously training verifiers to re-rank
solutions at inference time (Pan et al., 2025a). See
Table 3 for detailed statistics on these SFT-trained
models.

4.2.2 RL-based method
Reinforcement learning optimizes issue resolution
strategies through iterative interaction. This pro-
cess hinges on the synergy of three core compo-
nents: the algorithm for policy updates, reward
design for guiding exploration, and the scaffold
for managing environment rollouts. A statistical
overview of recent models and their implementa-
tions across these dimensions is presented in Ta-
ble 4 and Table 5.

Algorithm. The optimization of agent behaviors
leverages various policy gradient and alignment
strategies to stabilize learning. We discuss three
common algorithmic choices as follows. (1) Group
Relative Policy Optimization (GRPO). A dominant
approach employs GRPO, which enhances reason-
ing capabilities by normalizing advantages across
group sampling without the heavy computational
burden of a critic model (Wei et al., 2025a; Sun
et al., 2025). (2) Proximal Policy Optimization
(PPO). Beyond group-based methods, some ap-
proaches utilize PPO for stable updates focused
on subtasks (Ma et al., 2025c). (3) Direct Prefer-
ence Optimization (DPO). Other work integrates
MCTS with DPO to align complex, multi-step de-
cision processes with high-quality preferred trajec-
tories (Zhang et al., 2025b).

Reward design. Effective feedback mechanisms
typically incorporate both sparse outcome-based
rewards and dense process-oriented signals. Most
systems employ outcome reward models to pro-
vide terminal signals by utilizing strict metrics
like patch similarity or detailed subtask verifica-
tion ranging from localization to editing, thereby
rigorously aligning outputs with ground truth (Wei
et al., 2025a; Ma et al., 2025c). To mitigate the chal-
lenge of signal sparsity in long-horizon reasoning,
researchers increasingly adopt process reward mod-
els and potential-based shaping techniques; these

mechanisms provide dense, step-by-step feedback
or token-level incentives, offering reward signals
for intermediate behaviors such as context manage-
ment and trajectory search throughout the reason-
ing process (Zeng et al., 2025b; Da et al., 2025;
Sun et al., 2025).

Scaffold. In the context of RL, a scaffold serves
as the inference framework for rollouts. As statis-
tics in Table 4 indicate, OpenHands is the most
prevalent scaffold, followed by workflow-based
methods (notably Agentless and two-stage work-
flows). Environment-native frameworks like R2E-
Gym and SWE-Gym are also frequently adopted
due to their seamless alignment with training data.

5 Analysis

Beyond developing new methodologies, a comple-
mentary line of research focuses on empirical anal-
ysis of existing data and methods, which provide
critical insights into the limitations of current ap-
proaches and offer valuable perspectives for future
research directions.

5.1 Data analysis

Recent scrutiny has exposed hidden benchmark
defects, revealing that agent success rates are fre-
quently inflated by solution leakage, ambiguous
issue descriptions, and weak test suites that fail
to catch incorrect patches (OpenAI, 2024; Alei-
than et al., 2024; Wang et al., 2025j). Recogniz-
ing that manual cleanup is too costly and incon-
sistent for large-scale datasets, the field is shifting
toward automating validation workflows, utilizing
model-based consensus mechanisms to reliably dis-
tinguish valid fixes from false positives without
human intervention (Oliva et al., 2025).

5.2 Methods analysis

Research has shifted beyond measuring simple suc-
cess rates to investigate the behavioral pathology of
agents. A primary focus involves diagnosing inter-
nal reasoning failures, specifically examining the
tendency of models to prioritize prolonged internal
deliberation over necessary environmental inter-
action—a maladaptive pattern that leads to anal-
ysis paralysis and rogue actions (Cuadron et al.,
2025). Complementing this, efforts to manage the
complexity of massive, 128k-token interaction logs
have led to streamlining trajectory inspection, uti-
lizing novel visual interfaces to transform cryptic

output streams into navigable workflows for rapid
error analysis (Bula et al., 2025).

6 Application

The industrial deployment of software engineering
AI has progressed from localized IDE assistance
to fully autonomous systems capable of handling
complex enterprise workflows. Due to space con-
straints, we provide a detailed discussion on these
application scenarios in § A.5.

7 Challenges and Opportunities

High computational overhead. The scalability
of SWE agents is bottlenecked by the high costs
of sandboxed environments and long-context in-
ference. Optimization strategies are required to
streamline these resource-intensive loops without
sacrificing performance.

Opacity in resource consumption. Benchmarks
often overlook efficiency, masking the high costs
of techniques like inference-time scaling. Standard-
ized reporting of latency and token usage is cru-
cial for guiding the development of cost-effective
agents.

Limited visually-grounded reasoning. Reliance
on text proxies for UI interpretation limits effec-
tiveness. Future research can adopt intrinsic multi-
modal solutions, such as code-centric MLLMs, to
better bridge the gap between visual rendering and
underlying code logic.

Safety risks in autonomous resolution. High
autonomy carries risks of destructive actions, such
as accidental code deletion. Future systems should
integrate safeguards, such as Git-based version con-
trol, to ensure autonomous modifications remain
secure and reversible.

Lack of fine-grained reward signals. Reinforce-
ment learning is hindered by sparse, binary feed-
back. Integrating fine-grained signals from com-
piler diagnostics and execution traces is necessary
to guide models through complex reasoning steps.

Data leakage and contamination. As bench-
marks approach saturation, evaluation validity is
compromised by data leakage. Future frameworks
must strictly enforce decontamination protocols to
ensure fairness and reliability.

Lack of universality across SE domains. While
current issue resolution tasks mirror development
workflows, they represent only a fraction of the full
Software Development Life Cycle (SDLC). Future
research should broaden the scope of issue reso-
lution tasks to develop more versatile automated
software generation methods.

8 Conclusion

In this paper, we conduct a systematic survey of
Issue Resolution. We offer a comprehensive review
of this domain. Specifically, we summarize the
rapidly growing ecosystem of data, methods, and
analysis through a meticulous taxonomy that offers
novel perspectives. Moreover, we delve into the
current frontiers, delineate the key challenges and
future directions, and engage in a discussion about
open problems and critical analyses. To the best
of our knowledge, this paper is the first systematic
survey dedicated specifically to this domain. We
hope that this survey serves as an introduction for
researchers and fosters future research in this area.

9 Limitations

As the first dedicated survey on Issue Resolution,
we prioritize high-level summaries over exhaus-
tive details due to space constraints. Our search
methodology relied on citation tracking (e.g., of
SWE-bench) and snowballing; while thorough, this
may overlook niche or nascent works. To address
this rapid evolution, we commit to continuously
updating our open-source repository.

References
Pavel Adamenko, Mikhail Ivanov, Aidar Valeev, Rodion

Levichev, Pavel Zadorozhny, Ivan Lopatin, Dmitry
Babayev, Alena Fenogenova, and Valentin Malykh.
2025. Swe-mera: A dynamic benchmark for agen-
ticly evaluating large language models on software
engineering tasks. Preprint, arXiv:2507.11059.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Alt-
man, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, and 1
others. 2025. gpt-oss-120b & gpt-oss-20b model
card. arXiv preprint arXiv:2508.10925.

Toufique Ahmed, Jatin Ganhotra, Rangeet Pan, Avra-
ham Shinnar, Saurabh Sinha, and Martin Hirzel.
2025a. Otter: Generating tests from issues to val-
idate swe patches. Preprint, arXiv:2502.05368.

Toufique Ahmed, Jatin Ganhotra, Avraham Shinnar,
and Martin Hirzel. 2025b. Execution-feedback

https://arxiv.org/abs/2507.11059
https://arxiv.org/abs/2507.11059
https://arxiv.org/abs/2507.11059
https://arxiv.org/abs/2502.05368
https://arxiv.org/abs/2502.05368
https://arxiv.org/abs/2508.06365

driven test generation from swe issues. Preprint,
arXiv:2508.06365.

Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham
Shinnar, and Saurabh Sinha. 2024. Tdd-bench veri-
fied: Can llms generate tests for issues before they
get resolved? Preprint, arXiv:2412.02883.

Reem Aleithan. 2025. Revisiting swe-bench: On the
importance of data quality for llm-based code models.
In 2025 IEEE/ACM 47th International Conference
on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 235–236.

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mo-
hajer, Elijah Nnorom, Gias Uddin, and Song Wang.
2024. Swe-bench+: Enhanced coding benchmark for
llms. Preprint, arXiv:2410.06992.

Antonis Antoniades, Albert Örwall, Kexun Zhang,
Yuxi Xie, Anirudh Goyal, and William Wang. 2025.
Swe-search: Enhancing software agents with monte
carlo tree search and iterative refinement. Preprint,
arXiv:2410.20285.

Ibragim Badertdinov, Alexander Golubev, Maksim
Nekrashevich, Anton Shevtsov, Simon Karasik, An-
drei Andriushchenko, Maria Trofimova, Daria Litv-
intseva, and Boris Yangel. 2025. Swe-rebench: An
automated pipeline for task collection and decon-
taminated evaluation of software engineering agents.
Preprint, arXiv:2505.20411.

Timothy Bula, Saurabh Pujar, Luca Buratti, Mihaela
Bornea, and Avirup Sil. 2025. Seaview: Software
engineering agent visual interface for enhanced work-
flow. Preprint, arXiv:2504.08696.

Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang,
Bo Fei, Bo Yang, Boji Shan, Changqing Yu, Chao
Wang, Cheng Zhu, and 1 others. 2025a. Minimax-
m1: Scaling test-time compute efficiently with light-
ning attention. arXiv preprint arXiv:2506.13585.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan,
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao
Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao
Cheng, Guangtai Liang, Yuchi Ma, Pan Bian, Tao
Xie, and Qianxiang Wang. 2024. Coder: Issue re-
solving with multi-agent and task graphs. Preprint,
arXiv:2406.01304.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Silin Chen, Shaoxin Lin, Xiaodong Gu, Yuling Shi,
Heng Lian, Longfei Yun, Dong Chen, Weiguo
Sun, Lin Cao, and Qianxiang Wang. 2025b. Swe-
exp: Experience-driven software issue resolution.
Preprint, arXiv:2507.23361.

Yang Chen, Toufique Ahmed, Reyhaneh Jabbarvand,
and Martin Hirzel. 2025c. When old meets new:
Evaluating the impact of regression tests on swe issue
resolution. Preprint, arXiv:2510.18270.

Zhi Chen and Lingxiao Jiang. 2025. Evaluating soft-
ware development agents: Patch patterns, code qual-
ity, and issue complexity in real-world github sce-
narios. In 2025 IEEE International Conference
on Software Analysis, Evolution and Reengineering
(SANER), page 657–668. IEEE.

Zhi Chen, Wei Ma, and Lingxiao Jiang. 2025d. Be-
yond final code: A process-oriented error analysis
of software development agents in real-world github
scenarios. Preprint, arXiv:2503.12374.

Zhilong Chen, Chengzong Zhao, Boyuan Chen, Dayi
Lin, Yihao Chen, Arthur Leung, Gopi Krishnan Ra-
jbahadur, Gustavo A. Oliva, Haoxiang Zhang, Aa-
ditya Bhatia, Chong Chun Yong, and Ahmed E.
Hassan. 2025e. Repoforge: Training a sota fast-
thinking swe agent with an end-to-end data curation
pipeline synergizing sft and rl at scale. Preprint,
arXiv:2508.01550.

Zimin Chen, Yue Pan, Siyu Lu, Jiayi Xu, Claire Le
Goues, Martin Monperrus, and He Ye. 2025f.
Prometheus: Unified knowledge graphs for issue
resolution in multilingual codebases. Preprint,
arXiv:2507.19942.

Anton Cheshkov, Pavel Zadorozhny, Rodion Levichev,
Evgeny Maslov, and Ronaldo Franco Jaldin. 2024.
Exploring the potential of conversational test suite
based program repair on swe-bench. Preprint,
arXiv:2410.04485.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao
Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu,
Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao,
Nicholas Thumiger, Aditya Desai, Ion Stoica, Ana
Klimovic, Graham Neubig, and Joseph E. Gonzalez.
2025. The danger of overthinking: Examining the
reasoning-action dilemma in agentic tasks. Preprint,
arXiv:2502.08235.

Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil
Barhate, and Sean Hendryx. 2025. Agent-rlvr: Train-
ing software engineering agents via guidance and
environment rewards. Preprint, arXiv:2506.11425.

DeepSeek-AI, Aixin Liu, Aoxue Mei, Bangcai Lin,
Bing Xue, Bingxuan Wang, Bingzheng Xu, Bochao
Wu, Bowei Zhang, Chaofan Lin, Chen Dong,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chen-
hao Xu, Chong Ruan, Damai Dai, Daya Guo, Dejian
Yang, and 245 others. 2025. Deepseek-v3.2: Pushing
the frontier of open large language models. Preprint,
arXiv:2512.02556.

Xiang Deng, Jeff Da, Edwin Pan, Yannis Yiming He,
Charles Ide, Kanak Garg, Niklas Lauffer, Andrew
Park, Nitin Pasari, Chetan Rane, Karmini Sampath,
Maya Krishnan, Srivatsa Kundurthy, Sean Hendryx,
Zifan Wang, Chen Bo Calvin Zhang, Noah Jacobson,

https://arxiv.org/abs/2508.06365
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2412.02883
https://doi.org/10.1109/ICSE-Companion66252.2025.00075
https://doi.org/10.1109/ICSE-Companion66252.2025.00075
https://arxiv.org/abs/2410.06992
https://arxiv.org/abs/2410.06992
https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2504.08696
https://arxiv.org/abs/2504.08696
https://arxiv.org/abs/2504.08696
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2507.23361
https://arxiv.org/abs/2507.23361
https://arxiv.org/abs/2510.18270
https://arxiv.org/abs/2510.18270
https://arxiv.org/abs/2510.18270
https://doi.org/10.1109/saner64311.2025.00068
https://doi.org/10.1109/saner64311.2025.00068
https://doi.org/10.1109/saner64311.2025.00068
https://doi.org/10.1109/saner64311.2025.00068
https://arxiv.org/abs/2503.12374
https://arxiv.org/abs/2503.12374
https://arxiv.org/abs/2503.12374
https://arxiv.org/abs/2503.12374
https://arxiv.org/abs/2508.01550
https://arxiv.org/abs/2508.01550
https://arxiv.org/abs/2508.01550
https://arxiv.org/abs/2507.19942
https://arxiv.org/abs/2507.19942
https://arxiv.org/abs/2410.04485
https://arxiv.org/abs/2410.04485
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2506.11425
https://arxiv.org/abs/2506.11425
https://arxiv.org/abs/2506.11425
https://arxiv.org/abs/2512.02556
https://arxiv.org/abs/2512.02556

Bing Liu, and Brad Kenstler. 2025. Swe-bench pro:
Can ai agents solve long-horizon software engineer-
ing tasks? Preprint, arXiv:2509.16941.

Yaxin Du, Yuzhu Cai, Yifan Zhou, Cheng Wang,
Yu Qian, Xianghe Pang, Qian Liu, Yue Hu, and Si-
heng Chen. 2025. Swe-dev: Evaluating and train-
ing autonomous feature-driven software development.
Preprint, arXiv:2505.16975.

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald
Clark, Christopher Ré, and Azalia Mirhoseini. 2025.
Codemonkeys: Scaling test-time compute for soft-
ware engineering. Preprint, arXiv:2501.14723.

Kelin Fu, Tianyu Liu, Zeyu Shang, Yingwei Ma, Jian
Yang, Jiaheng Liu, and Kaigui Bian. 2025. Multi-
docker-eval: A ‘shovel of the gold rush’ benchmark
on automatic environment building for software engi-
neering. Preprint, arXiv:2512.06915.

Shubham Gandhi, Jason Tsay, Jatin Ganhotra, Kiran
Kate, and Yara Rizk. 2025. When agents go astray:
Course-correcting swe agents with prms. Preprint,
arXiv:2509.02360.

Spandan Garg, Benjamin Steenhoek, and Yufan Huang.
2025. Saving swe-bench: A benchmark mutation
approach for realistic agent evaluation. Preprint,
arXiv:2510.08996.

Anmol Gautam, Kishore Kumar, Adarsh Jha, Mukunda
NS, and Ishaan Bhola. 2024. Supercoder2.0: Techni-
cal report on exploring the feasibility of llms as au-
tonomous programmer. Preprint, arXiv:2409.11190.

Alexander Golubev, Maria Trofimova, Sergei Polezhaev,
Ibragim Badertdinov, Maksim Nekrashevich, Anton
Shevtsov, Simon Karasik, Sergey Abramov, Andrei
Andriushchenko, Filipp Fisin, Sergei Skvortsov, and
Boris Yangel. 2025. Training long-context, multi-
turn software engineering agents with reinforcement
learning. Preprint, arXiv:2508.03501.

Jiale Guo, Suizhi Huang, Mei Li, Dong Huang, Xing-
sheng Chen, Regina Zhang, Zhijiang Guo, Han
Yu, Siu-Ming Yiu, Pietro Lio, and Kwok-Yan Lam.
2025a. A comprehensive survey on benchmarks and
solutions in software engineering of llm-empowered
agentic system. Preprint, arXiv:2510.09721.

Lianghong Guo, Wei Tao, Runhan Jiang, Yanlin Wang,
Jiachi Chen, Xilin Liu, Yuchi Ma, Mingzhi Mao,
Hongyu Zhang, and Zibin Zheng. 2025b. Omnigirl:
A multilingual and multimodal benchmark for github
issue resolution. Proceedings of the ACM on Soft-
ware Engineering, 2(ISSTA):24–46.

Lianghong Guo, Yanlin Wang, Caihua Li, Pengyu Yang,
Jiachi Chen, Wei Tao, Yingtian Zou, Duyu Tang, and
Zibin Zheng. 2025c. Swe-factory: Your automated
factory for issue resolution training data and evalua-
tion benchmarks. Preprint, arXiv:2506.10954.

Dhruv Gupta, Gayathri Ganesh Lakshmy, and Yiqing
Xie. 2025. Sacl: Understanding and combat-
ing textual bias in code retrieval with semantic-
augmented reranking and localization. Preprint,
arXiv:2506.20081.

Xinyi He, Qian Liu, Mingzhe Du, Lin Yan, Zhijie Fan,
Yiming Huang, Zejian Yuan, and Zejun Ma. 2025a.
Swe-perf: Can language models optimize code per-
formance on real-world repositories? Preprint,
arXiv:2507.12415.

Zhenyu He, Qingping Yang, Wei Sheng, Xiaojian
Zhong, Kechi Zhang, Chenxin An, Wenlei Shi, Tianle
Cai, Di He, Jiaze Chen, and Jingjing Xu. 2025b. Swe-
swiss: A multi-task fine-tuning and rl recipe for high-
performance issue resolution. https://www.noti
on.so/SWE-Swiss-A-Multi-Task-Fine-Tunin
g-and-RL-Recipe-for-High-Performance-Iss
ue-Resolution-21e174dedd4880ea829ed4c861c
44f88. Notion Blog.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng,
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.
Preprint, arXiv:2308.00352.

Hao Hu, Hongyu Zhang, Jifeng Xuan, and Weigang Sun.
2014. Effective bug triage based on historical bug-fix
information. In Proceedings of the 2014 IEEE 25th
International Symposium on Software Reliability En-
gineering, ISSRE ’14, page 122–132, USA. IEEE
Computer Society.

Kai Huang, Zhengzi Xu, Su Yang, Hongyu Sun, Xuejun
Li, Zheng Yan, and Yuqing Zhang. 2023. A survey
on automated program repair techniques. Preprint,
arXiv:2303.18184.

Kai Huang, Jian Zhang, Xiaofei Xie, and Chunyang
Chen. 2025. Seeing is fixing: Cross-modal reasoning
with multimodal llms for visual software issue fixing.
Preprint, arXiv:2506.16136.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang
Zheng, Koushik Sen, and Ion Stoica. 2025. R2e-
gym: Procedural environments and hybrid verifiers
for scaling open-weights swe agents. Preprint,
arXiv:2504.07164.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Mingjian Jiang, Yangjun Ruan, Luis Lastras, Pavan Ka-
panipathi, and Tatsunori Hashimoto. 2025a. Putting
it all into context: Simplifying agents with lclms.
Preprint, arXiv:2505.08120.

Zhonghao Jiang, Xiaoxue Ren, Meng Yan, Wei Jiang,
Yong Li, and Zhongxin Liu. 2025b. Issue localiza-
tion via llm-driven iterative code graph searching.
Preprint, arXiv:2503.22424.

https://arxiv.org/abs/2509.16941
https://arxiv.org/abs/2509.16941
https://arxiv.org/abs/2509.16941
https://arxiv.org/abs/2505.16975
https://arxiv.org/abs/2505.16975
https://arxiv.org/abs/2501.14723
https://arxiv.org/abs/2501.14723
https://arxiv.org/abs/2512.06915
https://arxiv.org/abs/2512.06915
https://arxiv.org/abs/2512.06915
https://arxiv.org/abs/2512.06915
https://arxiv.org/abs/2509.02360
https://arxiv.org/abs/2509.02360
https://arxiv.org/abs/2510.08996
https://arxiv.org/abs/2510.08996
https://arxiv.org/abs/2409.11190
https://arxiv.org/abs/2409.11190
https://arxiv.org/abs/2409.11190
https://arxiv.org/abs/2508.03501
https://arxiv.org/abs/2508.03501
https://arxiv.org/abs/2508.03501
https://arxiv.org/abs/2510.09721
https://arxiv.org/abs/2510.09721
https://arxiv.org/abs/2510.09721
https://doi.org/10.1145/3728871
https://doi.org/10.1145/3728871
https://doi.org/10.1145/3728871
https://arxiv.org/abs/2506.10954
https://arxiv.org/abs/2506.10954
https://arxiv.org/abs/2506.10954
https://arxiv.org/abs/2506.20081
https://arxiv.org/abs/2506.20081
https://arxiv.org/abs/2506.20081
https://arxiv.org/abs/2507.12415
https://arxiv.org/abs/2507.12415
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://doi.org/10.1109/ISSRE.2014.17
https://doi.org/10.1109/ISSRE.2014.17
https://arxiv.org/abs/2303.18184
https://arxiv.org/abs/2303.18184
https://arxiv.org/abs/2506.16136
https://arxiv.org/abs/2506.16136
https://arxiv.org/abs/2504.07164
https://arxiv.org/abs/2504.07164
https://arxiv.org/abs/2504.07164
https://arxiv.org/abs/2505.08120
https://arxiv.org/abs/2505.08120
https://arxiv.org/abs/2503.22424
https://arxiv.org/abs/2503.22424

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

Alexander Kovrigin, Aleksandra Eliseeva, Yaroslav
Zharov, and Timofey Bryksin. 2024. On the impor-
tance of reasoning for context retrieval in repository-
level code editing. Preprint, arXiv:2406.04464.

Bin Lei, Weitai Kang, Zijian Zhang, Winson Chen,
Xi Xie, Shan Zuo, Mimi Xie, Ali Payani, Mingyi
Hong, Yan Yan, and Caiwen Ding. 2025. Infantagent-
next: A multimodal generalist agent for automated
computer interaction. Preprint, arXiv:2505.10887.

Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo,
Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang,
and Qiuwu Chen. 2024. Infant agent: A tool-
integrated, logic-driven agent with cost-effective api
usage. Preprint, arXiv:2411.01114.

Han Li, Yuling Shi, Shaoxin Lin, Xiaodong Gu, Heng
Lian, Xin Wang, Yantao Jia, Tao Huang, and Qianxi-
ang Wang. 2025a. Swe-debate: Competitive multi-
agent debate for software issue resolution. Preprint,
arXiv:2507.23348.

Hongwei Li, Yuheng Tang, Shiqi Wang, and Wenbo
Guo. 2025b. Patchpilot: A cost-efficient software
engineering agent with early attempts on formal veri-
fication. Preprint, arXiv:2502.02747.

Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao,
Wen Luo, Guangyue Peng, Yangyu Huang, Houfeng
Wang, and Scarlett Li. 2025c. Fea-bench: A
benchmark for evaluating repository-level code
generation for feature implementation. Preprint,
arXiv:2503.06680.

Shanchao Liang, Spandan Garg, and Roshanak Zilouch-
ian Moghaddam. 2025. The swe-bench illusion:
When state-of-the-art llms remember instead of rea-
son. Preprint, arXiv:2506.12286.

Jiaye Lin, Yifu Guo, Yuzhen Han, Sen Hu, Ziyi Ni,
Licheng Wang, Mingguang Chen, Hongzhang Liu,
Ronghao Chen, Yangfan He, Daxin Jiang, Binx-
ing Jiao, Chen Hu, and Huacan Wang. 2025. Se-
agent: Self-evolution trajectory optimization in multi-
step reasoning with llm-based agents. Preprint,
arXiv:2508.02085.

Yalan Lin, Yingwei Ma, Rongyu Cao, Binhua Li, Fei
Huang, Xiaodong Gu, and Yongbin Li. 2024. Llms
as continuous learners: Improving the reproduc-
tion of defective code in software issues. Preprint,
arXiv:2411.13941.

Bingchang Liu, Chaoyu Chen, Zi Gong, Cong Liao,
Huan Wang, Zhichao Lei, Ming Liang, Dajun Chen,
Min Shen, Hailian Zhou, Wei Jiang, Hang Yu, and
Jianguo Li. 2024a. Mftcoder: Boosting code llms
with multitask fine-tuning. In Proceedings of the

30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’24, page 5430–5441,
New York, NY, USA. Association for Computing
Machinery.

Shukai Liu, Jian Yang, Bo Jiang, Yizhi Li, Jinyang Guo,
Xianglong Liu, and Bryan Dai. 2025a. Context as
a tool: Context management for long-horizon swe-
agents. Preprint, arXiv:2512.22087.

Simiao Liu, Fang Liu, Liehao Li, Xin Tan, Yinghao
Zhu, Xiaoli Lian, and Li Zhang. 2025b. An em-
pirical study on failures in automated issue solving.
Preprint, arXiv:2509.13941.

Ye Liu, Rui Meng, Shafiq Joty, silvio savarese, Caim-
ing Xiong, Yingbo Zhou, and Semih Yavuz. 2025c.
CodeXEmbed: A generalist embedding model fam-
ily for multilingual and multi-task code retrieval. In
Second Conference on Language Modeling.

Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu,
Yexuan Shi, Zhao Zhang, and Chao Peng. 2024b.
Marscode agent: Ai-native automated bug fixing.
Preprint, arXiv:2409.00899.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan,
Ameen Patel, Qingyang Wu, Alpay Ariyak, Colin
Cai, Tarun Venkat, Shang Zhu, Ben Athiwaratkun,
Manan Roongta, Ce Zhang, Li Erran Li, Raluca Ada
Popa, Koushik Sen, and Ion Stoica. 2025. Deepswe:
Training a state-of-the-art coding agent from scratch
by scaling rl. https://pretty-radio-b75.notio
n.site/DeepSWE-Training-a-Fully-Open-sou
rced-State-of-the-Art-Coding-Agent-by-S
caling-RL-22281902c1468193aabbe9a8c59bbe3
3. Notion Blog.

Jeffrey Jian Ma, Milad Hashemi, Amir Yazdanbakhsh,
Kevin Swersky, Ofir Press, Enhui Li, Vijay Janapa
Reddi, and Parthasarathy Ranganathan. 2025a. Swe-
fficiency: Can language models optimize real-
world repositories on real workloads? Preprint,
arXiv:2511.06090.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang,
Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li, Fei
Huang, and Yongbin Li. 2024. Lingma swe-gpt: An
open development-process-centric language model
for automated software improvement. Preprint,
arXiv:2411.00622.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li,
Fei Huang, and Yongbin Li. 2025b. Alibaba ling-
maagent: Improving automated issue resolution via
comprehensive repository exploration. In Proceed-
ings of the 33rd ACM International Conference on
the Foundations of Software Engineering, FSE Com-
panion ’25, page 238–249. ACM.

Zexiong Ma, Chao Peng, Pengfei Gao, Xiangxin Meng,
Yanzhen Zou, and Bing Xie. 2025c. Sorft: Issue re-
solving with subtask-oriented reinforced fine-tuning.
Preprint, arXiv:2502.20127.

https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2406.04464
https://arxiv.org/abs/2406.04464
https://arxiv.org/abs/2406.04464
https://arxiv.org/abs/2505.10887
https://arxiv.org/abs/2505.10887
https://arxiv.org/abs/2505.10887
https://arxiv.org/abs/2411.01114
https://arxiv.org/abs/2411.01114
https://arxiv.org/abs/2411.01114
https://arxiv.org/abs/2507.23348
https://arxiv.org/abs/2507.23348
https://arxiv.org/abs/2502.02747
https://arxiv.org/abs/2502.02747
https://arxiv.org/abs/2502.02747
https://arxiv.org/abs/2503.06680
https://arxiv.org/abs/2503.06680
https://arxiv.org/abs/2503.06680
https://arxiv.org/abs/2506.12286
https://arxiv.org/abs/2506.12286
https://arxiv.org/abs/2506.12286
https://arxiv.org/abs/2508.02085
https://arxiv.org/abs/2508.02085
https://arxiv.org/abs/2508.02085
https://arxiv.org/abs/2411.13941
https://arxiv.org/abs/2411.13941
https://arxiv.org/abs/2411.13941
https://doi.org/10.1145/3637528.3671609
https://doi.org/10.1145/3637528.3671609
https://arxiv.org/abs/2512.22087
https://arxiv.org/abs/2512.22087
https://arxiv.org/abs/2512.22087
https://arxiv.org/abs/2509.13941
https://arxiv.org/abs/2509.13941
https://openreview.net/forum?id=z3lG70Azbg
https://openreview.net/forum?id=z3lG70Azbg
https://arxiv.org/abs/2409.00899
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://arxiv.org/abs/2511.06090
https://arxiv.org/abs/2511.06090
https://arxiv.org/abs/2511.06090
https://arxiv.org/abs/2411.00622
https://arxiv.org/abs/2411.00622
https://arxiv.org/abs/2411.00622
https://doi.org/10.1145/3696630.3728549
https://doi.org/10.1145/3696630.3728549
https://doi.org/10.1145/3696630.3728549
https://arxiv.org/abs/2502.20127
https://arxiv.org/abs/2502.20127

Matias Martinez and Xavier Franch. 2025. Dissecting
the swe-bench leaderboards: Profiling submitters and
architectures of llm- and agent-based repair systems.
Preprint, arXiv:2506.17208.

Noble Saji Mathews and Meiyappan Nagappan. 2025.
Is your automated software engineer trustworthy?
Preprint, arXiv:2506.17812.

Sanket Mhatre, Yasharth Bajpai, Sumit Gulwani, Emer-
son Murphy-Hill, and Gustavo Soares. 2025. Swe-
sharp-bench: A reproducible benchmark for c# soft-
ware engineering tasks. Preprint, arXiv:2511.02352.

Samuel Miserendino, Michele Wang, Tejal Patwardhan,
and Johannes Heidecke. 2025. Swe-lancer: Can fron-
tier llms earn $1 million from real-world freelance
software engineering? Preprint, arXiv:2502.12115.

Fangwen Mu, Junjie Wang, Lin Shi, Song Wang,
Shoubin Li, and Qing Wang. 2025. Experepair: Dual-
memory enhanced llm-based repository-level pro-
gram repair. Preprint, arXiv:2506.10484.

Niels Mündler, Mark Niklas Müller, Jingxuan He, and
Martin Vechev. 2024. Swt-bench: Testing and val-
idating real-world bug-fixes with code agents. In
Advances in Neural Information Processing Systems,
volume 37, pages 81857–81887. Curran Associates,
Inc.

Noor Nashid, Islem Bouzenia, Michael Pradel, and
Ali Mesbah. 2025. Issue2test: Generating repro-
ducing test cases from issue reports. Preprint,
arXiv:2503.16320.

Nebius. 2024. Scaling data collection for training SWE
agents. https://nebius.com/blog/posts/scal
ing-data-collection-for-training-swe-age
nts. Accessed: 2025-12-12.

Gustavo A. Oliva, Gopi Krishnan Rajbahadur, Aaditya
Bhatia, Haoxiang Zhang, Yihao Chen, Zhilong Chen,
Arthur Leung, Dayi Lin, Boyuan Chen, and Ahmed E.
Hassan. 2025. Spice: An automated swe-bench la-
beling pipeline for issue clarity, test coverage, and
effort estimation. Preprint, arXiv:2507.09108.

OpenAI. 2024. Introducing swe-bench verified | openai.
[Online; accessed 2025-09-22].

Siru Ouyang, Jun Yan, I-Hung Hsu, Yanfei Chen,
Ke Jiang, Zifeng Wang, Rujun Han, Long T. Le,
Samira Daruki, Xiangru Tang, Vishy Tirumalashetty,
George Lee, Mahsan Rofouei, Hangfei Lin, Jiawei
Han, Chen-Yu Lee, and Tomas Pfister. 2025a. Rea-
soningbank: Scaling agent self-evolving with reason-
ing memory. Preprint, arXiv:2509.25140.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhi-
han Zhang, Mengzhao Jia, Jiawei Han, Hongming
Zhang, and Dong Yu. 2025b. Repograph: Enhancing
ai software engineering with repository-level code
graph. Preprint, arXiv:2410.14684.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2025a.
Training software engineering agents and verifiers
with swe-gym. Preprint, arXiv:2412.21139.

Ruwei Pan, Hongyu Zhang, and Chao Liu. 2025b.
Codecor: An llm-based self-reflective multi-
agent framework for code generation. Preprint,
arXiv:2501.07811.

Minh V. T. Pham, Huy N. Phan, Hoang N. Phan,
Cuong Le Chi, Tien N. Nguyen, and Nghi D. Q. Bui.
2025. Swe-synth: Synthesizing verifiable bug-fix
data to enable large language models in resolving
real-world bugs. Preprint, arXiv:2504.14757.

Thanosan Prathifkumar, Noble Saji Mathews, and
Meiyappan Nagappan. 2025. Does swe-bench-
verified test agent ability or model memory?
Preprint, arXiv:2512.10218.

Binhang Qi, Hailong Sun, Wei Yuan, Hongyu Zhang,
and Xiangxin Meng. 2022. Dreamloc: A deep rel-
evance matching-based framework for bug localiza-
tion. IEEE Transactions on Reliability, 71(1):235–
249.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024. Chatdev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
page 15174–15186. Association for Computational
Linguistics.

Muhammad Shihab Rashid, Christian Bock, Yuan
Zhuang, Alexander Buchholz, Tim Esler, Si-
mon Valentin, Luca Franceschi, Martin Wistuba,
Prabhu Teja Sivaprasad, Woo Jung Kim, Anoop
Deoras, Giovanni Zappella, and Laurent Callot.
2025. Swe-polybench: A multi-language bench-
mark for repository level evaluation of coding agents.
Preprint, arXiv:2504.08703.

Abhinav Rastogi, Adam Yang, Albert Q. Jiang, Alexan-
der H. Liu, Alexandre Sablayrolles, Amélie Héliou,
Amélie Martin, Anmol Agarwal, Andy Ehrenberg,
Andy Lo, Antoine Roux, Arthur Darcet, Arthur Men-
sch, Baptiste Bout, Baptiste Rozière, Baudouin De
Monicault, Chris Bamford, Christian Wallenwein,
Christophe Renaudin, and 84 others. 2025. Devs-
tral: Fine-tuning language models for coding agent
applications. Preprint, arXiv:2509.25193.

Revanth Gangi Reddy, Tarun Suresh, JaeHyeok Doo,
Ye Liu, Xuan Phi Nguyen, Yingbo Zhou, Semih
Yavuz, Caiming Xiong, Heng Ji, and Shafiq Joty.
2025. Swerank: Software issue localization with
code ranking. Preprint, arXiv:2505.07849.

Haifeng Ruan, Yuntong Zhang, and Abhik Roychoud-
hury. 2025. Specrover: Code intent extraction via
llms. In 2025 IEEE/ACM 47th International Confer-
ence on Software Engineering (ICSE), page 963–974.
IEEE.

https://arxiv.org/abs/2506.17208
https://arxiv.org/abs/2506.17208
https://arxiv.org/abs/2506.17208
https://arxiv.org/abs/2506.17812
https://arxiv.org/abs/2511.02352
https://arxiv.org/abs/2511.02352
https://arxiv.org/abs/2511.02352
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2506.10484
https://arxiv.org/abs/2506.10484
https://arxiv.org/abs/2506.10484
https://doi.org/10.52202/079017-2601
https://doi.org/10.52202/079017-2601
https://arxiv.org/abs/2503.16320
https://arxiv.org/abs/2503.16320
https://nebius.com/blog/posts/scaling-data-collection-for-training-swe-agents
https://nebius.com/blog/posts/scaling-data-collection-for-training-swe-agents
https://nebius.com/blog/posts/scaling-data-collection-for-training-swe-agents
https://arxiv.org/abs/2507.09108
https://arxiv.org/abs/2507.09108
https://arxiv.org/abs/2507.09108
https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2509.25140
https://arxiv.org/abs/2509.25140
https://arxiv.org/abs/2509.25140
https://arxiv.org/abs/2410.14684
https://arxiv.org/abs/2410.14684
https://arxiv.org/abs/2410.14684
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2501.07811
https://arxiv.org/abs/2501.07811
https://arxiv.org/abs/2504.14757
https://arxiv.org/abs/2504.14757
https://arxiv.org/abs/2504.14757
https://arxiv.org/abs/2512.10218
https://arxiv.org/abs/2512.10218
https://doi.org/10.1109/TR.2021.3104728
https://doi.org/10.1109/TR.2021.3104728
https://doi.org/10.1109/TR.2021.3104728
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2509.25193
https://arxiv.org/abs/2509.25193
https://arxiv.org/abs/2509.25193
https://arxiv.org/abs/2505.07849
https://arxiv.org/abs/2505.07849
https://doi.org/10.1109/icse55347.2025.00080
https://doi.org/10.1109/icse55347.2025.00080

Amirali Sajadi, Kostadin Damevski, and Preetha Chat-
terjee. 2025. Are ai-generated fixes secure? analyz-
ing llm and agent patches on swe-bench. Preprint,
arXiv:2507.02976.

ByteDance Seed, :, Jiaze Chen, Tiantian Fan, Xin Liu,
Lingjun Liu, Zhiqi Lin, Mingxuan Wang, Chengyi
Wang, Xiangpeng Wei, Wenyuan Xu, Yufeng Yuan,
Yu Yue, Lin Yan, Qiying Yu, Xiaochen Zuo, Chi
Zhang, Ruofei Zhu, Zhecheng An, and 255 others.
2025. Seed1.5-thinking: Advancing superb reason-
ing models with reinforcement learning. Preprint,
arXiv:2504.13914.

Manish Shetty, Naman Jain, Jinjian Liu, Vijay
Kethanaboyina, Koushik Sen, and Ion Stoica. 2025.
Gso: Challenging software optimization tasks for
evaluating swe-agents. Preprint, arXiv:2505.23671.

KaShun Shum, Binyuan Hui, Jiawei Chen, Lei Zhang,
X. W., Jiaxi Yang, Yuzhen Huang, Junyang Lin,
and Junxian He. 2025. Swe-rm: Execution-free
feedback for software engineering agents. Preprint,
arXiv:2512.21919.

Atefeh Sohrabizadeh, Jialin Song, Mingjie Liu, Rajarshi
Roy, Chankyu Lee, Jonathan Raiman, and Bryan
Catanzaro. 2025. Nemotron-CORTEXA: Enhancing
LLM agents for software engineering tasks via im-
proved localization and solution diversity. In Forty-
second International Conference on Machine Learn-
ing.

Aditya Bharat Soni, Boxuan Li, Xingyao Wang, Valerie
Chen, and Graham Neubig. 2025. Coding agents
with multimodal browsing are generalist problem
solvers. Preprint, arXiv:2506.03011.

Hongjin SU, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin,
Tao Yu, and Sercan O Arik. 2025. Learn-by-interact:
A data-centric framework for self-adaptive agents in
realistic environments. In The Thirteenth Interna-
tional Conference on Learning Representations.

Weiwei Sun, Miao Lu, Zhan Ling, Kang Liu, Xuesong
Yao, Yiming Yang, and Jiecao Chen. 2025. Scaling
long-horizon llm agent via context-folding. Preprint,
arXiv:2510.11967.

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach
Nussbaum, Andriy Mulyar, Brandon Duderstadt, and
Heng Ji. 2025. CoRNStack: High-quality contrastive
data for better code retrieval and reranking. In The
Thirteenth International Conference on Learning
Representations.

Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou,
Daniel Shao, Tingting Du, Xinming Wei, Peng Xia,
Fang Wu, He Zhu, Ge Zhang, Jiaheng Liu, Xingyao
Wang, Sirui Hong, Chenglin Wu, Hao Cheng, Chi
Wang, and Wangchunshu Zhou. 2025a. Agent kb:
Leveraging cross-domain experience for agentic prob-
lem solving. Preprint, arXiv:2507.06229.

Xunzhu Tang, Jiechao Gao, Jin Xu, Tiezhu Sun,
Yewei Song, Saad Ezzini, Wendkûuni C. Ouédraogo,

Jacques Klein, and Tegawendé F. Bissyandé. 2025b.
SynFix: Dependency-aware program repair via Re-
lationGraph analysis. In Findings of the Association
for Computational Linguistics: ACL 2025, pages
4878–4894, Vienna, Austria. Association for Compu-
tational Linguistics.

Yuheng Tang, Hongwei Li, Kaijie Zhu, Michael Yang,
Yangruibo Ding, and Wenbo Guo. 2025c. Co-patcher:
Collaborative software patching with component(s)-
specific small reasoning models. Preprint,
arXiv:2505.18955.

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang
Zhang, Hongyu Zhang, and Yu Cheng. 2024. Magis:
Llm-based multi-agent framework for github issue
resolution. Preprint, arXiv:2403.17927.

Natalia Tarasova, Enrique Balp-Straffon, Aleksei
Iancheruk, Yevhenii Sielskyi, Nikita Kozodoi,
Liam H. Byrne, Jack Butler, Dayuan jiang, Marcin
Czelej, Andrew Ang, Yash Shah, Roi Blanco, and
Sergei Ivanov. 2025. SWE-infrabench: Evaluating
language models on cloud infrastructure code. In
NeurIPS 2025 Workshop on Evaluating the Evolving
LLM Lifecycle: Benchmarks, Emergent Abilities, and
Scaling.

Vali Tawosi, Salwa Alamir, Xiaomo Liu, and Manuela
Veloso. 2025. Meta-rag on large codebases using
code summarization. Preprint, arXiv:2508.02611.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jia-
hao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen,
Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei
Cui, Hao Ding, Mengnan Dong, Angang Du, Chen-
zhuang Du, Dikang Du, Yulun Du, Yu Fan, and 150
others. 2025a. Kimi k2: Open agentic intelligence.
Preprint, arXiv:2507.20534.

Meituan LongCat Team, Anchun Gui, Bei Li, Bingyang
Tao, Bole Zhou, Borun Chen, Chao Zhang, Chao
Zhang, Chengcheng Han, Chenhui Yang, Chi
Zhang, Chong Peng, Chuyu Zhang, Cong Chen,
Fengcun Li, Gang Xu, Guoyuan Lin, Hao Jiang,
Hao Liang, and 108 others. 2025b. Introducing
longcat-flash-thinking: A technical report. Preprint,
arXiv:2509.18883.

Trae Research Team, Pengfei Gao, Zhao Tian, Xi-
angxin Meng, Xinchen Wang, Ruida Hu, Yuanan
Xiao, Yizhou Liu, Zhao Zhang, Junjie Chen, Cuiyun
Gao, Yun Lin, Yingfei Xiong, Chao Peng, and Xia
Liu. 2025c. Trae agent: An llm-based agent for soft-
ware engineering with test-time scaling. Preprint,
arXiv:2507.23370.

Minh V. T. Thai, Tue Le, Dung Nguyen Manh,
Huy Phan Nhat, and Nghi D. Q. Bui. 2025.
Swe-evo: Benchmarking coding agents in long-
horizon software evolution scenarios. Preprint,
arXiv:2512.18470.

Arihant Tripathy, Ch Pavan Harshit, and Karthik Vaid-
hyanathan. 2025. Swenergy: An empirical study on
energy efficiency in agentic issue resolution frame-
works with slms. Preprint, arXiv:2512.09543.

https://arxiv.org/abs/2507.02976
https://arxiv.org/abs/2507.02976
https://arxiv.org/abs/2504.13914
https://arxiv.org/abs/2504.13914
https://arxiv.org/abs/2505.23671
https://arxiv.org/abs/2505.23671
https://arxiv.org/abs/2512.21919
https://arxiv.org/abs/2512.21919
https://openreview.net/forum?id=k6p8UKRdH7
https://openreview.net/forum?id=k6p8UKRdH7
https://openreview.net/forum?id=k6p8UKRdH7
https://arxiv.org/abs/2506.03011
https://arxiv.org/abs/2506.03011
https://arxiv.org/abs/2506.03011
https://openreview.net/forum?id=3UKOzGWCVY
https://openreview.net/forum?id=3UKOzGWCVY
https://openreview.net/forum?id=3UKOzGWCVY
https://arxiv.org/abs/2510.11967
https://arxiv.org/abs/2510.11967
https://openreview.net/forum?id=iyJOUELYir
https://openreview.net/forum?id=iyJOUELYir
https://arxiv.org/abs/2507.06229
https://arxiv.org/abs/2507.06229
https://arxiv.org/abs/2507.06229
https://doi.org/10.18653/v1/2025.findings-acl.252
https://doi.org/10.18653/v1/2025.findings-acl.252
https://arxiv.org/abs/2505.18955
https://arxiv.org/abs/2505.18955
https://arxiv.org/abs/2505.18955
https://arxiv.org/abs/2403.17927
https://arxiv.org/abs/2403.17927
https://arxiv.org/abs/2403.17927
https://openreview.net/forum?id=XX0ciUwfXa
https://openreview.net/forum?id=XX0ciUwfXa
https://arxiv.org/abs/2508.02611
https://arxiv.org/abs/2508.02611
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2509.18883
https://arxiv.org/abs/2509.18883
https://arxiv.org/abs/2507.23370
https://arxiv.org/abs/2507.23370
https://arxiv.org/abs/2512.18470
https://arxiv.org/abs/2512.18470
https://arxiv.org/abs/2512.09543
https://arxiv.org/abs/2512.09543
https://arxiv.org/abs/2512.09543

Nguyen Phu Vinh, Anh Chung Hoang, Chris Ngo,
and Truong-Son Hy. 2025. Repeton: Structured
bug repair with react-guided patch-and-test cycles.
Preprint, arXiv:2506.08173.

Boshi Wang, Weijian Xu, Yunsheng Li, Mei Gao, Yujia
Xie, Huan Sun, and Dongdong Chen. 2025a. Im-
proving code localization with repository memory.
Preprint, arXiv:2510.01003.

Chaozheng Wang, Zezhou Yang, Shuzheng Gao,
Cuiyun Gao, Ting Peng, Hailiang Huang, Yuetang
Deng, and Michael Lyu. 2025b. Rag or fine-tuning?
a comparative study on lcms-based code completion
in industry. arXiv preprint arXiv:2505.15179.

Haoran Wang, Zhenyu Hou, Yao Wei, Jie Tang, and
Yuxiao Dong. 2025c. Swe-dev: Building software
engineering agents with training and inference scal-
ing. Preprint, arXiv:2506.07636.

Jinghui Wang, Shaojie Wang, Yinghan Cui, Xux-
ing Chen, Chao Wang, Xiaojiang Zhang, Minglei
Zhang, Jiarong Zhang, Wenhao Zhuang, Yuchen
Cao, Wankang Bao, Haimo Li, Zheng Lin, Huim-
ing Wang, Haoyang Huang, Zongxian Feng, Zizheng
Zhan, Ken Deng, Wen Xiang, and 8 others. 2025d.
Seamlessflow: A trainer agent isolation rl framework
achieving bubble-free pipelines via tag scheduling.
Preprint, arXiv:2508.11553.

Junhao Wang, Daoguang Zan, Shulin Xin, Siyao Liu,
Yurong Wu, and Kai Shen. 2025e. Swe-mirror:
Scaling issue-resolving datasets by mirroring issues
across repositories. Preprint, arXiv:2509.08724.

Lilin Wang, Lucas Ramalho, Alan Celestino, Phuc An-
thony Pham, Yu Liu, Umang Kumar Sinha, Andres
Portillo, Onassis Osunwa, and Gabriel Maduekwe.
2025f. Swe-bench++: A framework for the scal-
able generation of software engineering bench-
marks from open-source repositories. Preprint,
arXiv:2512.17419.

Ruiyi Wang and Prithviraj Ammanabrolu. 2025. A prac-
titioner’s guide to multi-turn agentic reinforcement
learning. Preprint, arXiv:2510.01132.

Xinchen Wang, Pengfei Gao, Xiangxin Meng, Chao
Peng, Ruida Hu, Yun Lin, and Cuiyun Gao. 2024.
Aegis: An agent-based framework for general bug
reproduction from issue descriptions. Preprint,
arXiv:2411.18015.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, Hoang H. Tran,
Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian,
Yanjun Shao, Niklas Muennighoff, Yizhe Zhang,
Binyuan Hui, and 5 others. 2025g. Openhands: An
open platform for ai software developers as generalist
agents. Preprint, arXiv:2407.16741.

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen,
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2025h.
Rlcoder: Reinforcement learning for repository-level

code completion. In 2025 IEEE/ACM 47th Interna-
tional Conference on Software Engineering (ICSE),
page 1140–1152. IEEE.

Yanlin Wang, Wanjun Zhong, Yanxian Huang, Ensheng
Shi, Min Yang, Jiachi Chen, Hui Li, Yuchi Ma, Qianx-
iang Wang, and Zibin Zheng. 2025i. Agents in soft-
ware engineering: survey, landscape, and vision. Au-
tomated Software Engineering, 32(2).

You Wang, Michael Pradel, and Zhongxin Liu.
2025j. Are "solved issues" in SWE-bench really
solved correctly? an empirical study. Preprint,
arxiv:2503.15223 [cs].

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,
Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel
Fried. 2025k. CodeRAG-bench: Can retrieval aug-
ment code generation? In Findings of the Association
for Computational Linguistics: NAACL 2025, pages
3199–3214, Albuquerque, New Mexico. Association
for Computational Linguistics.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin
Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang.
2025a. Swe-rl: Advancing llm reasoning via re-
inforcement learning on open software evolution.
Preprint, arXiv:2502.18449.

Yuxiang Wei, Zhiqing Sun, Emily McMilin,
Jonas Gehring, David Zhang, Gabriel Syn-
naeve, Daniel Fried, Lingming Zhang, and Sida
Wang. 2025b. Toward training superintelligent
software agents through self-play swe-rl. Preprint,
arXiv:2512.18552.

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and
Franz Wotawa. 2016. A survey on software fault lo-
calization. IEEE Trans. Softw. Eng., 42(8):707–740.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr-
ishna Ramanathan, and Xiaofei Ma. 2024. Repo-
former: Selective retrieval for repository-level code
completion. arXiv preprint arXiv:2403.10059.

Junde Wu. 2025. Git context controller: Manage
the context of llm-based agents like git. Preprint,
arXiv:2508.00031.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystifying
llm-based software engineering agents. Preprint,
arXiv:2407.01489.

Chunqiu Steven Xia, Zhe Wang, Yan Yang, Yuxiang
Wei, and Lingming Zhang. 2025. Live-swe-agent:
Can software engineering agents self-evolve on the
fly? Preprint, arXiv:2511.13646.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai
Lam, Difan Zou, and Kai Chen. 2025. Swe-fixer:
Training open-source llms for effective and efficient
github issue resolution. Preprint, arXiv:2501.05040.

https://arxiv.org/abs/2506.08173
https://arxiv.org/abs/2506.08173
https://arxiv.org/abs/2510.01003
https://arxiv.org/abs/2510.01003
https://arxiv.org/abs/2506.07636
https://arxiv.org/abs/2506.07636
https://arxiv.org/abs/2506.07636
https://arxiv.org/abs/2508.11553
https://arxiv.org/abs/2508.11553
https://arxiv.org/abs/2509.08724
https://arxiv.org/abs/2509.08724
https://arxiv.org/abs/2509.08724
https://arxiv.org/abs/2512.17419
https://arxiv.org/abs/2512.17419
https://arxiv.org/abs/2512.17419
https://arxiv.org/abs/2510.01132
https://arxiv.org/abs/2510.01132
https://arxiv.org/abs/2510.01132
https://arxiv.org/abs/2411.18015
https://arxiv.org/abs/2411.18015
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://doi.org/10.1109/icse55347.2025.00014
https://doi.org/10.1109/icse55347.2025.00014
https://doi.org/10.1007/s10515-025-00544-2
https://doi.org/10.1007/s10515-025-00544-2
https://doi.org/10.1145/3744916.3764576
https://doi.org/10.1145/3744916.3764576
https://doi.org/10.18653/v1/2025.findings-naacl.176
https://doi.org/10.18653/v1/2025.findings-naacl.176
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2512.18552
https://arxiv.org/abs/2512.18552
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://arxiv.org/abs/2508.00031
https://arxiv.org/abs/2508.00031
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2511.13646
https://arxiv.org/abs/2511.13646
https://arxiv.org/abs/2511.13646
https://arxiv.org/abs/2501.05040
https://arxiv.org/abs/2501.05040
https://arxiv.org/abs/2501.05040

Bojian Xiong, Yikun Lei, Xikai Liu, Shaowei Zhang,
Pengyun Zhu, Yan Liu, Yongqi Leng, Ling Shi,
Meizhi Zhong, Yurong Zhang, Yan Gao, Yiwu,
Yao Hu, and Deyi Xiong. 2025. Think-search-
patch: A retrieval-augmented reasoning framework
for repository-level code repair. In Proceedings of
the 2025 Conference on Empirical Methods in Nat-
ural Language Processing: Industry Track, pages
1555–1566, Suzhou (China). Association for Compu-
tational Linguistics.

Jingxuan Xu, Ken Deng, Weihao Li, Songwei Yu,
Huaixi Tang, Haoyang Huang, Zhiyi Lai, Zizheng
Zhan, Yanan Wu, Chenchen Zhang, Kepeng Lei, Yi-
fan Yao, Xinping Lei, Wenqiang Zhu, Zongxian Feng,
Han Li, Junqi Xiong, Dailin Li, Zuchen Gao, and 20
others. 2025a. Swe-compass: Towards unified eval-
uation of agentic coding abilities for large language
models. Preprint, arXiv:2511.05459.

Wendong Xu, Jing Xiong, Chenyang Zhao, Qiujiang
Chen, Haoran Wang, Hui Shen, Zhongwei Wan,
Jianbo Dai, Taiqiang Wu, He Xiao, Chaofan Tao,
Z. Morley Mao, Ying Sheng, Zhijiang Guo, Hongxia
Yang, Bei Yu, Lingpeng Kong, Quanquan Gu, and
Ngai Wong. 2025b. Swingarena: Competitive pro-
gramming arena for long-context github issue solving.
Preprint, arXiv:2505.23932.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao
Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41
others. 2025a. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Boyang Yang, Jiadong Ren, Shunfu Jin, Yang Liu, Feng
Liu, Bach Le, and Haoye Tian. 2025b. Enhancing
repository-level software repair via repository-aware
knowledge graphs. Preprint, arXiv:2503.21710.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. 2024a. Swe-agent: Agent-computer interfaces
enable automated software engineering. Preprint,
arXiv:2405.15793.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kil-
ian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R.
Narasimhan, Diyi Yang, Sida I. Wang, and Ofir
Press. 2024b. Swe-bench multimodal: Do ai systems
generalize to visual software domains? Preprint,
arXiv:2410.03859.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexan-
der Wettig, Kabir Khandpur, Yanzhe Zhang, Binyuan
Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang.
2025c. Swe-smith: Scaling data for software engi-
neering agents. Preprint, arXiv:2504.21798.

Zonghan Yang, Shengjie Wang, Kelin Fu, Wenyang
He, Weimin Xiong, Yibo Liu, Yibo Miao, Bofei
Gao, Yejie Wang, Yingwei Ma, Yanhao Li, Yue Liu,

Zhenxing Hu, Kaitai Zhang, Shuyi Wang, Huarong
Chen, Flood Sung, Yang Liu, Yang Gao, and 2 others.
2025d. Kimi-dev: Agentless training as skill prior
for swe-agents. Preprint, arXiv:2509.23045.

Boxi Yu, Yuxuan Zhu, Pinjia He, and Daniel Kang.
2025a. Utboost: Rigorous evaluation of coding
agents on swe-bench. Preprint, arXiv:2506.09289.

Zhongming Yu, Hejia Zhang, Yujie Zhao, Hanxian
Huang, Matrix Yao, Ke Ding, and Jishen Zhao.
2025b. Orcaloca: An llm agent framework for soft-
ware issue localization. Preprint, arXiv:2502.00350.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen,
Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu, Xiao-
jian Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao,
Liangqiang Chen, Yuyu Zhang, Jing Su, Tianyu Liu,
Rui Long, Kai Shen, and Liang Xiang. 2025. Multi-
swe-bench: A multilingual benchmark for issue re-
solving. Preprint, arXiv:2504.02605.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin,
Yifan Shi, Wei Liu, Dong Chen, Zongshuai Qi, Hao
Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan
Bian, Guangtai Liang, Bei Guan, Pengjie Huang, Tao
Xie, Yongji Wang, and Qianxiang Wang. 2024. Swe-
bench-java: A github issue resolving benchmark for
java. Preprint, arXiv:2408.14354.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin
Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao
Zeng, Jiajie Zhang, and 1 others. 2025a. Glm-4.5:
Agentic, reasoning, and coding (arc) foundation mod-
els. arXiv preprint arXiv:2508.06471.

Guangtao Zeng, Maohao Shen, Delin Chen, Zhenting
Qi, Subhro Das, Dan Gutfreund, David Cox, Gregory
Wornell, Wei Lu, Zhang-Wei Hong, and Chuang Gan.
2025b. Satori-swe: Evolutionary test-time scaling
for sample-efficient software engineering. Preprint,
arXiv:2505.23604.

Liang Zeng, Yongcong Li, Yuzhen Xiao, Changshi
Li, Chris Yuhao Liu, Rui Yan, Tianwen Wei, Ju-
jie He, Xuchen Song, Yang Liu, and Yahui Zhou.
2025c. Skywork-swe: Unveiling data scaling
laws for software engineering in llms. Preprint,
arXiv:2506.19290.

Zizheng Zhan, Ken Deng, Jinghui Wang, Xiaojiang
Zhang, Huaixi Tang, Minglei Zhang, Zhiyi Lai,
Haoyang Huang, Wen Xiang, Kun Wu, Wenhao
Zhuang, Shaojie Wang, Shangpeng Yan, Kepeng Lei,
Zongxian Feng, Huiming Wang, Zheng Lin, Meng-
tong Li, Mengfei Xie, and 21 others. 2025. Kat-coder
technical report. Preprint, arXiv:2510.18779.

Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange,
and Jeff Clune. 2025a. Darwin godel machine: Open-
ended evolution of self-improving agents. Preprint,
arXiv:2505.22954.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jinliang You,
Jia Li, Yunfei Zhao, and Zhi Jin. 2025b. Sealign:
Alignment training for software engineering agent.
Preprint, arXiv:2503.18455.

https://doi.org/10.18653/v1/2025.emnlp-industry.109
https://doi.org/10.18653/v1/2025.emnlp-industry.109
https://doi.org/10.18653/v1/2025.emnlp-industry.109
https://arxiv.org/abs/2511.05459
https://arxiv.org/abs/2511.05459
https://arxiv.org/abs/2511.05459
https://arxiv.org/abs/2505.23932
https://arxiv.org/abs/2505.23932
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2503.21710
https://arxiv.org/abs/2503.21710
https://arxiv.org/abs/2503.21710
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2509.23045
https://arxiv.org/abs/2509.23045
https://arxiv.org/abs/2506.09289
https://arxiv.org/abs/2506.09289
https://arxiv.org/abs/2502.00350
https://arxiv.org/abs/2502.00350
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2408.14354
https://arxiv.org/abs/2408.14354
https://arxiv.org/abs/2408.14354
https://arxiv.org/abs/2505.23604
https://arxiv.org/abs/2505.23604
https://arxiv.org/abs/2506.19290
https://arxiv.org/abs/2506.19290
https://arxiv.org/abs/2510.18779
https://arxiv.org/abs/2510.18779
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2503.18455
https://arxiv.org/abs/2503.18455

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhi-
wei Liu, Rithesh Murthy, Tian Lan, Lei Li, Renze
Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby
Heinecke, Silvio Savarese, Huan Wang, and Caim-
ing Xiong. 2024a. Diversity empowers intelligence:
Integrating expertise of software engineering agents.
Preprint, arXiv:2408.07060.

Lei Zhang, Jiaxi Yang, Min Yang, Jian Yang, Mouxiang
Chen, Jiajun Zhang, Zeyu Cui, Binyuan Hui, and Jun-
yang Lin. 2025c. Swe-flow: Synthesizing software
engineering data in a test-driven manner. Preprint,
arXiv:2506.09003.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang,
Bowen Li, Chengxing Xie, Junhao Wang, Maoquan
Wang, Yufan Huang, Shengyu Fu, Elsie Nallipogu,
Qingwei Lin, Yingnong Dang, Saravan Rajmohan,
and Dongmei Zhang. 2025d. Swe-bench goes live!
Preprint, arXiv:2505.23419.

Linhao Zhang, Daoguang Zan, Quanshun Yang, Zhirong
Huang, Dong Chen, Bo Shen, Tianyu Liu, Yongshun
Gong, Huang Pengjie, Xudong Lu, Guangtai Liang,
Lizhen Cui, and Qianxiang Wang. 2025e. CodeV: Is-
sue resolving with visual data. In Findings of the As-
sociation for Computational Linguistics: ACL 2025,
pages 7350–7361, Vienna, Austria. Association for
Computational Linguistics.

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong
Sun, and Zhenyu Chen. 2023. A survey of learning-
based automated program repair. ACM Trans. Softw.
Eng. Methodol., 33(2).

Yilin Zhang, Xinran Zhao, Zora Zhiruo Wang,
Chenyang Yang, Jiayi Wei, and Tongshuang Wu.
2025f. cast: Enhancing code retrieval-augmented
generation with structural chunking via abstract syn-
tax tree. Preprint, arXiv:2506.15655.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Ab-
hik Roychoudhury. 2024b. Autocoderover: Au-
tonomous program improvement. In Proceedings
of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA ’24, page
1592–1604. ACM.

Zejun Zhang, Jian Wang, Qingyun Yang, Yifan Pan,
Yi Tang, Yi Li, Zhenchang Xing, Tian Zhang, Xuan-
dong Li, and Guoan Zhang. 2025g. A benchmark
for localizing code and non-code issues in software
projects. Preprint, arXiv:2509.25242.

Dewu Zheng, Yanlin Wang, Ensheng Shi, Xilin Liu,
Yuchi Ma, Hongyu Zhang, and Zibin Zheng. 2025.
Top general performance = top domain performance?
domaincodebench: A multi-domain code generation
benchmark. Preprint, arXiv:2412.18573.

Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where
should the bugs be fixed? - more accurate informa-
tion retrieval-based bug localization based on bug
reports. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, page
14–24. IEEE Press.

Xuhui Zhou, Valerie Chen, Zora Zhiruo Wang, Gra-
ham Neubig, Maarten Sap, and Xingyao Wang. 2025.
Tom-swe: User mental modeling for software engi-
neering agents. Preprint, arXiv:2510.21903.

Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy
Zhang, Shu Liu, Sasha Cui, Sayash Kapoor, Shayne
Longpre, Kevin Meng, Rebecca Weiss, Fazl Barez,
Rahul Gupta, Jwala Dhamala, Jacob Merizian, Mario
Giulianelli, Harry Coppock, Cozmin Ududec, Jasjeet
Sekhon, Jacob Steinhardt, and 6 others. 2025. Estab-
lishing best practices for building rigorous agentic
benchmarks. Preprint, arXiv:2507.02825.

https://arxiv.org/abs/2408.07060
https://arxiv.org/abs/2408.07060
https://arxiv.org/abs/2506.09003
https://arxiv.org/abs/2506.09003
https://arxiv.org/abs/2505.23419
https://doi.org/10.18653/v1/2025.findings-acl.384
https://doi.org/10.18653/v1/2025.findings-acl.384
https://doi.org/10.1145/3631974
https://doi.org/10.1145/3631974
https://arxiv.org/abs/2506.15655
https://arxiv.org/abs/2506.15655
https://arxiv.org/abs/2506.15655
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
https://arxiv.org/abs/2509.25242
https://arxiv.org/abs/2509.25242
https://arxiv.org/abs/2509.25242
https://arxiv.org/abs/2412.18573
https://arxiv.org/abs/2412.18573
https://arxiv.org/abs/2412.18573
https://arxiv.org/abs/2510.21903
https://arxiv.org/abs/2510.21903
https://arxiv.org/abs/2507.02825
https://arxiv.org/abs/2507.02825
https://arxiv.org/abs/2507.02825

A Appendix

A.1 Related work
Code generation. The application of LLMs in
the programming domain has witnessed explo-
sive growth. Early research focused primarily on
function-level code generation, with benchmarks
such as HumanEval (Chen et al., 2021) serving as
standard metrics. However, generic benchmarks
often fail to capture the nuances of real-world
development. To bridge this gap, recent initia-
tives (Zheng et al., 2025; Li et al., 2025c) have
attempted to extend evaluation tasks to align more
closely with realistic software development scenar-
ios, revealing the limitations of general models in
specialized domains. Concurrently, methods are
also evolving to capture these broader contexts.
While foundational approaches primarily relied
on SFT (Liu et al., 2024a) or standard retrieval-
augmented generation (Wu et al., 2024; Wang et al.,
2025k), RL-based methods emerged as a pivotal
direction for handling complex coding tasks (Wang
et al., 2025h).

Automated software generation. The primary
goal of this task is to autonomously construct
complete and executable software systems start-
ing from high-level natural language requirements.
Unlike code completion, it necessitates covering
the SDLC, including requirement analysis, sys-
tem design, coding, and testing. To address the
complexity and potential logic inconsistencies in
this process, state-of-the-art frameworks like Chat-
Dev (Qian et al., 2024) and MetaGPT (Hong et al.,
2024) leverage multi-agent collaboration, simulat-
ing human development teams to decompose com-
plex tasks into streamlined and verifiable work-
flows.

Automated software maintenance. Issue res-
olution is intrinsically linked to the broader do-
main of automated software maintenance. Method-
ologies established in this field are frequently en-
capsulated as callable tools to augment the capa-
bilities of LLMs in software development tasks.
Key techniques utilized to enhance LLM perfor-
mance include fault localization approaches such
as SBFL (Wong et al., 2016; Zhou et al., 2012; Qi
et al., 2022; Hu et al., 2014), code search (Zhang
et al., 2025g), and test generation (Ahmed et al.,
2024; Mündler et al., 2024). These tools provide
agents with precise error locations, relevant code
context, and verification mechanisms necessary for

effective resolution. Furthermore, recent research
has expanded the scope of automated software
maintenance by utilizing issue resolution data to
construct dialogue datasets that capture real-world
human-computer collaboration (Garg et al., 2025).

Related surveys. Existing surveys primarily fo-
cus on code generation (Jiang et al., 2024; Wang
et al., 2025b) or other tasks within the software en-
gineering domain (Huang et al., 2023; Zhang et al.,
2023; Guo et al., 2025a; Wang et al., 2025i). This
paper bridges this gap by offering the first system-
atic survey dedicated to the entire spectrum of Issue
Resolution, ranging from non-agent approaches to
the latest agentic advancements.

A.2 Detailed discussions on background
The Issue Resolution task aims to automatically re-
solve reported issues. As illustrated in Figure 1 , it
is formally defined by an instance represented as a
triple I = (D, C, T), where these components map
directly to the benchmark’s metadata structure:

• D: Issue description, which is the original
GitHub issue text description detailing the bug
or feature request.

• C: Codebase, the collection of source files at
the specific commit state before the issue was
resolved. This state is precisely defined by the
repository identifier (owner/repo) and a base
commit hash, requiring the evaluation environ-
ment to perform a git clone and subsequent git
checkout to establish the exact pre-fix version.

• T : Tests, the complete set of unit and sys-
tem tests associated with the issue, derived
from the original developer’s test patch. This
set is explicitly categorized into two subsets:
Tfail→pass, containing tests that fail on C and
must pass after the patch (verifying the fix),
and Tpass→pass, containing tests that must
pass both before and after (ensuring no re-
gression).

Given only the inputs (D, C), the model proposes
an edit to resolve the issue. The model’s output is
a Patch P (represented as a patch file). (The target
solution is the gold patch provided in the dataset,
which is not revealed to the model). The patch P
must be successfully applied to C using a standard
patch application utility. The codebase resulting
from this application is C′. Crucially, the tests T
are not revealed to the model during this process.

Evaluation. To evaluate a proposed solution
(patch P), it is first applied to the original code-
base C to obtain C′. The repository’s test suite T
is then executed on C′. The evaluation framework
captures the output in a test log, which is subse-
quently processed by a log parser to determine the
test results (e.g., pass or fail). Based on the parsed
results, the solution is scored: it is considered suc-
cessful if the patch applies correctly and all tests in
T pass. The final benchmark metric is the Resolve
Rate, defined as the percentage of tasks that are
successfully resolved.

Data Construction. This process is structured
into four main stages.

First, (1) Repo Selection and Data Scraping in-
volves collecting a large set of PRs from popular,
well-maintained open-source repositories (e.g., 12
popular Python repositories for the original SWE-
bench).

Second, (2) Attribute-based Filtering narrows
down the candidates, selecting only merged PRs
that are documented to resolve a specific GitHub is-
sue and that make modifications to the repository’s
test files (indicating that tests were contributed).

Third, (3) Execution-based Filtering is a criti-
cal stage that ensures tasks are reproducible and
valid. To guarantee reliable environment construc-
tion, recent works increasingly leverage CI/CD
configurations—specifically GitHub Actions work-
flows found under .github/workflows/—as the
ground truth for dependency management. For in-
stance, Multi-SWE-bench (Zan et al., 2025) ex-
tracts build steps from these workflows to cre-
ate isolated Dockerized environments. Similarly,
SWE-Sharp-Bench (Mhatre et al., 2025) confirms
build viability by executing local GitHub Actions
workflows, ensuring the repository successfully
builds and passes tests at the latest commit. By
filtering out instances that fail these automated in-
stallation or runtime checks, this stage establishes
a stable foundation. Finally, it verifies the PR’s
corrective nature by executing the test suite be-
fore and after applying the patch, retaining only
instances that demonstrate at least one clear Fail-
to-Pass (F2P) test transition.

Finally, (4) Manual Verification is performed to
ensure the quality and usability of the filtered tasks.
This step often involves human inspection to check
for the clarity of the problem description (issue),
the self-contained nature of the task, and its overall
suitability for the benchmark.

While this initial pipeline was effective for cre-
ating a static dataset (e.g., the 2,294 SWE-bench
instances), its reliance on a complex, manual-heavy
environment setup (especially in stages 3 and 4)
and its susceptibility to data contamination limited
its long-term scalability and dynamism. Conse-
quently, subsequent research has focused on en-
hancing these data methods, leading to two major
axes of improvement: Data Collection for building
more dynamic benchmarks, and Data Synthesis for
creating high-quality synthetic datasets for training
large language models.

A.3 Detailed discussions on Data

Table 1 provides a comprehensive survey of the
rapidly evolving domain of SWE-bench related
datasets. While the original SWE-bench and its re-
fined iterations (such as SWE-bench Lite and SWE-
bench Verified) set the standard for Python-based
issue resolution, recent works have significantly
expanded the scope of evaluation along three main
axes: language diversity, modality, and scale.

Multilingual Expansion. A major limitation of
early benchmarks was their exclusive focus on
Python. To address this, datasets such as SWE-
bench-java, Multi-SWE-bench, SWE-bench Multi-
lingual, and SWE-PolyBench have been introduced.
These datasets extend evaluation capabilities to a
wide array of popular languages including Java,
C++, Go, Rust, JavaScript, and TypeScript, encom-
passing thousands of repositories to test the gener-
alization ability of agents across different syntaxes
and ecosystems.

Multimodality. Recognizing that modern soft-
ware development often involves visual elements
(particularly in frontend development), datasets
like SWE-bench Multimodal, CodeV, and Omni-
GIRL have incorporated visual contexts. These
benchmarks require agents to process not only code
and text but also visual data, targeting languages
like HTML, CSS, and TypeScript.

Scale and Training Resources. To support the
training of more robust agents, several large-scale
datasets have been curated. SWE-Smith, SWE-
Fixer, and SWE-bench-extra dramatically increase
the volume of data, offering up to 115k instances
(in the case of SWE-Fixer). Notably, as indicated
in the "Environment" column, the field is shifting
towards execution-based validation; unlike earlier
static datasets, the majority of recent benchmarks

Dataset Language Multimodal Repos Amount Environment Link

SWE-bench-train Python ✗ 37 19k ✗ §

SWE-bench Python ✗ 12 2294 ✓ §

SWE-bench Lite Python ✗ 12 300 ✓ §

SWE-bench Verified Python ✗ / 500 ✓ §

SWE-bench-java Java ✗ 19 1797 ✓ §

SWE-bench Multimodal JS,TS,HTML,CSS ✓ 17 619 ✓ §

SWE-bench-extra Python ✗ 2k 6.38k ✓

Visual SWE-bench Python ✓ 11 133 ✓ §

SWE-Lancer JS, TS ✗ / 1488 ✓ §

Multi-SWE-bench Java, JS, TS, Go, Rust, C,
C++

✗ 76 4,723 ✓ §

R2E-Gym Python ✗ 10 8,135 ✓ §

SWE-PolyBench Python, Java, JS, TS ✗ 21 2110 ✓ §

Loc-Bench Python ✗ / 560 ✗ §

SWE-smith Python ✗ 128 50k ✓ §

SWE-bench Multilingual C, C++, Go, Java, JS, TS,
Rust, Python, Ruby, PHP

✗ 42 300 ✓ §

SWE-Fixer Python ✗ 856 115406 ✗ §

OmniGIRL Python, TS, Java, JS ✓ 15 959 ✓ §

SWE-rebench Python ✗ 30,000 21,336 ✓

SWE-bench-Live Python ✗ 93 1319 ✓ §

SWE-Gym Python ✗ 11 2,438 ✓ §

SWE-Flow Python ✗ 74 18081 ✓ §

SWE-Factory Python, Java, JS, TS ✗ 12 430 ✓ §

SWE-Bench-CL Python ✗ 8 273 ✓ §

Skywork-SWE Python ✗ 2531 10169 ✓ /
SWE-MERA Python ✗ 200 300 ✓ §

SWE-Perf Python ✗ 12 140 ✓ §

RepoForge Python ✗ / 7.3k ✓ /
SWE-Mirror Python, Rust, Go ✗ 40 60k ✓ /
SWE-Bench Pro Go, TS, Python ✗ 41 1865 ✓ §

SWE-InfraBench Python, TS ✗ / 100 ✓ /
SWE-Sharp-Bench C# ✗ 17 150 ✓ §

SWE-fficiency Python, Cython ✗ 9 498 ✓ §

SWE-Compass Python, JS, TS, Java, C, C++,
Go, Rust, Kotlin, C#

✗ / 2000 ✓ §

SWE-bench++ Python, Go, TS, JS, Ruby,
PHP, Java, Rust, C++, C#, C

✗ 3,971 1,782 ✓ §

SWE-EVO Python ✗ 7 48 ✓ §

Table 1: A comprehensive survey and statistical overview of issue resolution datasets. We categorize these
datasetsbased on programming language, modality support, source repositories, data scale (Amount), and the
availability ofreproducible execution environments.

now provide reproducible dockerized environments
to rigorously verify agent generated patches.

A.4 Detailed discussions on training methods

Table 3 provides a comprehensive overview of re-
cent SFT-based approaches.

Table 4 categorizes specialized models that have
undergone further alignment, predominantly via
Reinforcement Learning. The table sorts models
by parameter size, revealing that smaller, dense
models (e.g., 7B-32B) can achieve competitive per-
formance against larger baselines when optimized
with domain-specific rewards. The trends observed
in the Reward column align with the design prin-
ciples detailed in Section 4.2.2. While sparse out-
come rewards based on test verification constitute
the predominant approach, the data reveals a grow-
ing integration of process rewards. These dense
feedback signals prove critical for stabilizing the
training of smaller models during long-horizon

tasks, thereby addressing the sparse signal chal-
lenges associated with complex repository-level de-
bugging. Additionally, the heterogeneity observed
in the Training Scaffolds category indicates a ten-
dency to deploy RL atop established agent frame-
works to enhance decision-making policies.

Finally, Table 5 lists general-purpose foundation
models evaluated on issue resolution (Zhan et al.,
2025; Seed et al., 2025; DeepSeek-AI et al., 2025;
Team et al., 2025a; Yang et al., 2025a; Zeng et al.,
2025a; Agarwal et al., 2025; Chen et al., 2025a;
Team et al., 2025b). In contrast to the specialized
models above, these systems rely entirely on exter-
nal inference scaffolds to bridge the gap between
general reasoning and repository-level engineering.
This comparison serves as a control group, high-
lighting the specific performance gains attributable
to the SFT and RL pipelines described in Section
4.2.

https://github.com/SWE-bench/SWE-bench
https://huggingface.co/datasets/princeton-nlp/SWE-bench/viewer/default/train
https://github.com/SWE-bench/SWE-bench
https://huggingface.co/datasets/princeton-nlp/SWE-bench
https://github.com/SWE-bench/SWE-bench
https://huggingface.co/datasets/princeton-nlp/SWE-bench_Lite
https://github.com/SWE-bench/SWE-bench
https://huggingface.co/datasets/princeton-nlp/SWE-bench_Verified
https://github.com/multi-swe-bench/multi-swe-bench-env
https://huggingface.co/datasets/Daoguang/Multi-SWE-bench
https://github.com/SWE-bench/SWE-bench
https://huggingface.co/datasets/SWE-bench/SWE-bench_Multimodal
https://huggingface.co/datasets/nebius/SWE-bench-extra
https://github.com/luolin101/CodeV
https://huggingface.co/datasets/luolin101/Visual-SWE-bench
https://github.com/openai/frontier-evals
https://github.com/multi-swe-bench/multi-swe-bench
https://huggingface.co/datasets/ByteDance-Seed/Multi-SWE-bench
https://github.com/R2E-Gym/R2E-Gym
https://huggingface.co/R2E-Gym/datasets
https://github.com/amazon-science/SWE-PolyBench
https://huggingface.co/datasets/AmazonScience/SWE-PolyBench
https://huggingface.co/datasets/Sellopale/SWE-PolyBench_500
https://github.com/gersteinlab/LocAgent
https://huggingface.co/datasets/czlll/Loc-Bench_V1
https://github.com/SWE-bench/SWE-smith
https://huggingface.co/datasets/SWE-bench/SWE-smith
https://github.com/SWE-bench/SWE-bench
https://huggingface.co/datasets/SWE-bench/SWE-bench_Multilingual
https://github.com/InternLM/SWE-Fixer
https://huggingface.co/datasets/internlm/SWE-Fixer-Train-110K
https://huggingface.co/datasets/internlm/SWE-Fixer-Eval
https://github.com/deepsoftwareanalytics/omnigirl
https://huggingface.co/datasets/Deep-Software-Analytics/OmniGIRL
https://huggingface.co/datasets/nebius/SWE-rebench
https://github.com/microsoft/SWE-bench-Live
https://huggingface.co/datasets/SWE-bench-Live/SWE-bench-Live
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/SWE-Gym/datasets
https://github.com/Hambaobao/SWE-Flow
https://github.com/DeepSoftwareAnalytics/swe-factory
https://huggingface.co/SWE-Factory
https://github.com/thomasjoshi/agents-never-forget
https://github.com/MERA-Evaluation/SWE-MERA-submissions
https://huggingface.co/datasets/MERA-evaluation/SWE-MERA
https://github.com/SWE-Perf/swe-perf
https://huggingface.co/datasets/SWE-Perf/SWE-Perf
https://github.com/scaleapi/SWE-bench_Pro-os
https://huggingface.co/datasets/ScaleAI/SWE-bench_Pro
https://github.com/microsoft/prose/tree/main/misc/SWE-Sharp-Bench
https://huggingface.co/datasets/microsoft/SWE-Sharp-Bench
https://github.com/swefficiency/swefficiency-site
https://github.com/kwaipilot/SWE-Compass/
https://huggingface.co/datasets/Kwaipilot/SWE-Compass
https://github.com/TuringEnterprises/SWE-Bench-plus-plus
https://huggingface.co/datasets/TuringEnterprises/SWE-Bench-plus-plus
https://github.com/bdqnghi/SWE-EVO

Dataset Language Repos Amount Link

R2E-Gym Python 10 3,321 §

SWE-Gym Python 11 491 §

SWE-Synth Python 11 3,018 §

SWE-Fixer Python 856 69,752 §

SWE-Factory Python 10 2,809 §

Table 2: A survey of trajectory datasets used for agent training or analysis. We list the programming language,
number of source repositories, and total trajectories for each dataset.

Model Name Base Model Size Arch. Training Scaffold Res.(%) Code Data Model

Devstral Mistral Small 3 22B Dense OpenHands 46.8 / �

Co-PatcheR Qwen2.5-Coder 14B Dense Agentless-mini, PatchPilot 46.0 § /

SWE-Swiss-32B Qwen2.5-32B-Instruct 32B Dense Agentless 45.0 §

Lingma SWE-GPT Qwen2.5-Instruct/Coder 72B/7B Dense SWESynInfer 30.2 § / /

SWE-Gym-Qwen-32B Qwen2.5-Coder-32B 32B Dense OpenHands, MoatlessTools 20.6 § /

SWE-Gym-Qwen-14B Qwen2.5-Coder-14B 14B Dense OpenHands, MoatlessTools 16.4 § /

SWE-Gym-Qwen-7B Qwen2.5-Coder-7B 7B Dense OpenHands, MoatlessTools 10.6 § /

Table 3: Overview of SFT-based methods for issue resolution. This table categorizes models by their base
architecture and training scaffold (Sorted by Performance).

A.5 Detailed discussions on applications

The evolution of AI in software engineering is char-
acterized by four distinct stages of increasing au-
tonomy and architectural sophistication:

Stage 1: Developer Augmentation. The initial
phase is dominated by AI pair programmers, such
as GitHub Copilot, which integrate directly into In-
tegrated Development Environments (IDEs). These
tools focus on real-time code completion and sug-
gestions. Empirical evidence from enterprise adop-
tion, such as at Accenture, indicates that these as-
sistants can increase developer productivity by up
to 55%, leading to widespread implementation at
major technology firms like Shopify.

Stage 2: Workflow Automation. The subse-
quent level introduces AI junior developers, repre-
sented by tools like Sweep AI. These agents auto-
mate the asynchronous lifecycle of software main-
tenance. Unlike isolated code completions, they
autonomously parse GitHub issues, analyze the rel-
evant codebase, generate necessary modifications,
and submit complete pull requests for human re-
view, effectively handling routine engineering tasks
without constant supervision.

Stage 3: End-to-End Autonomy. The most ad-
vanced operational stage involves fully autonomous
agents like Devin. Functioning within secure sand-
boxed environments equipped with a shell, editor,

and browser, these agents handle complex multi-
step engineering tasks ranging from planning to
execution. Their industrial impact is significant;
for instance, during a major code migration at the
fintech company Nubank, such autonomous agents
reportedly achieved a 12x improvement in engineer-
ing efficiency compared to traditional methods.

Stage 4: Ecosystem Integration. The latest
trend emphasizes platform interoperability and
compliance. Emerging tools like Claude Code
focus on embedding AI capabilities into existing
enterprise workflows with rigorous security gov-
ernance. Concurrently, platforms like Trae utilize
the Model Context Protocol (MCP) to orchestrate
multi-agent architectures, fostering an extensible
ecosystem where diverse AI tools can collaborate
seamlessly.

https://github.com/R2E-Gym/R2E-Gym
https://huggingface.co/datasets/R2E-Gym/R2EGym-SFT-Trajectories
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/datasets/SWE-Gym/OpenHands-SFT-Trajectories
https://github.com/FSoft-AI4Code/SWE-Synth
https://huggingface.co/datasets/swesynth/SWE-Synth_Moatless-SFT-Trajectories
https://github.com/InternLM/SWE-Fixer
https://huggingface.co/datasets/internlm/SWE-Fixer-Train-Editing-CoT-70K
https://github.com/DeepSoftwareAnalytics/swe-factory
https://huggingface.co/datasets/SWE-Factory/DeepSWE-Agent-Kimi-K2-Trajectories-2.8K
https://mistral.ai/news/devstral
https://huggingface.co/mistralai/Devstral-Small-2507
https://github.com/ucsb-mlsec/Co-PatcheR
https://huggingface.co/collections/UCSB-SURFI/co-patcher
https://github.com/zhenyuhe00/SWE-Swiss
https://huggingface.co/SWE-Swiss/datasets
https://huggingface.co/SWE-Swiss/models
https://github.com/LingmaTongyi/Lingma-SWE-GPT
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/SWE-Gym
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/SWE-Gym
https://github.com/SWE-Gym/SWE-Gym
https://huggingface.co/SWE-Gym

Model Name Base Model Size Arch. Train. Scaffold Reward Res.(%) Code Data Model

560B Models (MoE)

LongCat-Flash-Think LongCatFlash-Base 560B-A27B MoE R2E-Gym Outcome 60.4 § /
72B Models

Kimi-Dev Qwen 2.5-72B-Base 72B Dense BugFixer + TestWriter Outcome 60.4 § /
Multi-turn RL(Nebius) Qwen2.5-72B-

Instruct
72B Dense SWE-agent Outcome 39.0 / / /

Agent-RLVR-RM-72B Qwen2.5-Coder-72B 72B Dense Localization + Repair Outcome 27.8 / / /
Agent-RLVR-72B Qwen2.5-Coder-72B 72B Dense Localization + Repair Outcome 22.4 / / /

70B Models

SWE-RL Llama-3.3-70B-
Instruct

70B Dense Agentless-mini Outcome 41.0 § / /

36B Models

FoldAgent Seed-OSS-36B-
Instruct

36B Dense FoldAgent Process 58.0 § � /

32B Models

OpenHands Critic Qwen2.5-Coder-32B 32B Dense SWE-Gym / 66.4 § /
KAT-Dev-32B Qwen3-32B 32B Dense / / 62.4 / /
SWE-Swiss-32B Qwen2.5-32B-

Instruct
32B Dense / Outcome 60.2 §

SeamlessFlow-32B Qwen3-32B 32B Dense SWE-agent Outcome 45.8 § / /
DeepSWE Qwen3-32B 32B Dense R2E-Gym Outcome 42.2 §

SA-SWE-32B / 32B Dense SkyRL-Agent / 39.4 / / /
OpenHands LM v0.1 Qwen2.5-Coder-32B 32B Dense SWE-Gym / 37.2 § /
SWE-Dev-32B Qwen2.5-Coder-32B 32B Dense OpenHands Outcome 36.6 § /
Satori-SWE Qwen2.5-Coder-32B 32B Dense Retriever + Code editor Outcome 35.8 §

SoRFT-32B Qwen2.5-Coder-32B 32B Dense Agentless Outcome 30.8 / / /
Agent-RLVR-32B Qwen2.5-Coder-32B 32B Dense Localization + Repair Outcome 21.6 / / /

14B Models

Agent-RLVR-14B Qwen2.5-Coder-14B 14B Dense Localization + Repair Outcome 18.0 / / /
SEAlign-14B Qwen2.5-Coder-14B 14B Dense OpenHands Process 17.7 / / /

9B Models

SWE-Dev-9B GLM-4-9B 9B Dense OpenHands Outcome 13.6 § /
8B Models

SeamlessFlow-8B Qwen3-8B 8B Dense SWE-agent Outcome 27.4 § / /
SWE-Dev-8B Llama-3.1-8B 8B Dense OpenHands Outcome 18.0 § /

7B Models

SWE-Dev-7B Qwen2.5-Coder-7B 7B Dense OpenHands Outcome 23.4 § /
SoRFT-7B Qwen2.5-Coder-7B 7B Dense Agentless Outcome 21.4 / / /
SEAlign-7B Qwen2.5-Coder-7B 7B Dense OpenHands Process 15.0 / / /

Table 4: A comprehensive overview of specialized models for issue resolution, categorized by parameter size.
The table details each model’s base architecture, the training scaffold used for rollout, the type of reward signal
employed (Outcome vs. Process), and their performance results (Res. %) on issue resolution benchmarks.

Model Name Size Arch. Inf. Scaffold Reward Res.(%) Code Model

KAT-Coder / / Claude Code Outcome 73.4 / �

Deepseek V3.2 671B-A37B MoE Claude Code, RooCode / 73.1 §

Kimi-K2-Instruct 1T MoE Agentless Outcome 71.6 /

Qwen3-Coder 480B-A35B MoE OpenHands Outcome 69.6 §

GLM-4.6 355B-A32B MoE OpenHands Outcome 68.0 /

gpt-oss-120b 116.8B-A5.1B MoE Internal tool Outcome 62.0 §

Minimax M2 230B-10B MoE R2E-Gym Outcome 61.0 §

gpt-oss-20b 20.9B-A3.6B MoE Internal tool Outcome 60.0 §

GLM-4.5-Air 106B-A12B MoE OpenHands Outcome 57.6 / /

Minimax M1-80k 456B-A45.9B MoE Agentless Outcome 56.0 § �

Minimax M1-40k 456B-A45.9B MoE Agentless Outcome 55.6 § �

Seed1.5-Thinking 200B-A20B MoE / Outcome 47.0 § /

Llama 4 Maverick 400B-A17B MoE mini-SWE-agent Outcome 21.0 §

Llama 4 Scout 109B-17B MoE mini-SWE-agent Outcome 9.1 §

Table 5: Overview of general foundation models evaluated on issue resolution. The table details the specific
inference scaffolds (e.g., OpenHands, Agentless) employed during the evaluation process to achieve the reported
results.

https://github.com/meituan-longcat/LongCat-Flash-Thinking
https://huggingface.co/meituan-longcat/LongCat-Flash-Thinking
https://github.com/MoonshotAI/Kimi-Dev
https://huggingface.co/moonshotai/Kimi-Dev-72B
https://github.com/facebookresearch/swe-rl
https://github.com/sunnweiwei/FoldAgent
https://drive.google.com/file/u/0/d/1aX5xXAN5R-gLKd8A0AY-troxXJRawyAM/view?usp=sharing&pli=1
https://github.com/All-Hands-AI/OpenHands
https://huggingface.co/OpenHands/openhands-critic-32b-exp-20250417
https://huggingface.co/Kwaipilot/KAT-Dev
https://github.com/zhenyuhe00/SWE-Swiss
https://huggingface.co/SWE-Swiss/datasets
https://huggingface.co/SWE-Swiss/models
https://github.com/Chojikun/seamlessflow
https://github.com/agentica-project/rllm
https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Subset
https://huggingface.co/agentica-org/DeepSWE-Preview
https://github.com/All-Hands-AI/OpenHands
https://huggingface.co/OpenHands/openhands-lm-32b-v0.1
https://github.com/THUDM/SWE-Dev
https://huggingface.co/zai-org/SWE-Dev-32B
https://github.com/satori-reasoning/Satori-SWE
https://huggingface.co/Satori-reasoning
https://huggingface.co/Satori-reasoning
https://github.com/THUDM/SWE-Dev
https://huggingface.co/zai-org/SWE-Dev-9B
https://github.com/Chojikun/seamlessflow
https://github.com/THUDM/SWE-Dev
https://huggingface.co/zai-org/SWE-Dev-8B
https://github.com/THUDM/SWE-Dev
https://huggingface.co/zai-org/SWE-Dev-7B
https://www.modelscope.cn/models/Kwaipilot/KAT-Dev-72B-Exp
https://github.com/deepseek-ai/DeepSeek-V3.2-Exp
https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Speciale
https://huggingface.co/moonshotai/Kimi-K2-Instruct
https://github.com/QwenLM/Qwen3-Coder
https://huggingface.co/collections/Qwen/qwen3-coder
https://huggingface.co/zai-org/GLM-4.6
https://github.com/openai/gpt-oss
https://huggingface.co/openai/gpt-oss-120b
https://github.com/MiniMax-AI/MiniMax-M2
https://huggingface.co/MiniMaxAI/MiniMax-M2
https://github.com/openai/gpt-oss
https://huggingface.co/openai/gpt-oss-20b
https://github.com/MiniMax-AI/MiniMax-M1
https://www.modelscope.cn/models/MiniMax/MiniMax-M1-80k
https://github.com/MiniMax-AI/MiniMax-M1
https://www.modelscope.cn/models/MiniMax/MiniMax-M1-40k/summary
https://github.com/ByteDance-Seed/Seed-Thinking-v1.5
https://github.com/meta-llama/llama-models/tree/main/models/llama4
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://github.com/meta-llama/llama-models/tree/main/models/llama4
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct

	Introduction
	Task formulation
	Data
	Datasets
	Evaluation datasets
	Training datasets

	Data construction
	Automated data collection
	Automated data synthesis

	Methods
	Training-free method
	Frameworks
	Tool modules
	Memory modules
	Inference-time scaling

	Training-based method
	SFT-based method
	RL-based method

	Analysis
	Data analysis
	Methods analysis

	Application
	Challenges and Opportunities
	Conclusion
	Limitations
	Appendix
	Related work
	Detailed discussions on background
	Detailed discussions on Data
	Detailed discussions on training methods
	Detailed discussions on applications

